
The AI Thunderdome
Using OpenStack to accelerate AI training
with Sahara, Spark, and Swift

Sean Pryor, Sr. Cloud Consultant, RHCE
Red Hat
https://www.redhat.com
spryor@redhat.com

This talk will cover

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift2

Overview

● Brief explanations of ML, Spark, and Sahara
● Some notes on preparation for Sahara
● (And some issues we hit in our lab while preparing for this talk)
● A look at Machine Learning concepts inside Spark
● Cross Validation and Model Selection
● Sparkflow architecture
● Example code

Big Data and OpenStack

● The data is already
there. Why move it
elsewhere to
analyze it?

● Tools are already
there to do the
analysis

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift4

Big Data and OpenStack
A lot of data resides on OpenStack already

From the user survey:
https://www.openstack.org/analytics

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift

● Sahara is a wrapper around Heat
○ It does more than just Spark too

● Basic architecture involves just Spark on
compute nodes

● Spark cluster can directly access Swift
via swift://container/object URLs

● Code deployed on Spark clusters can
access things independently as well

5

Sahara+Spark+Swift Architecture
Basic architecture outline

● Spark has a master/slave architecture

● The cluster manager can be either the built-in
one, Mesos, Yarn, or Kubernetes

● Spark is built on top of the traditional
Map/Reduce framework, but has additional
tools, notably ones that include Machine
Learning

● For TensorFlow, there are several frameworks
that make training and deploying models on
Spark a lot easier

● Workers have in-memory data cache - this is
important to know when using TensorFlow

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift6

Basic architecture outline
Spark Architecture Overview

Image modifications are
needed

Ensure hadoop swift
support is present

OpenStack job framework
doesn't support Python

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift7

● guestmount works great here

● pip install:

○ tensorflow or
tensorflow-gpu

○ keras
○ sparkdl
○ sparkflow

● Add supergroup to ubuntu user

● java.lang.RuntimeException:
java.lang.ClassNotFoundExcep
tion: Class
org.apache.hadoop.fs.swift.s
native.SwiftNativeFileSystem
not found

● This error indicates support is
missing, may need to reinstall
/usr/lib/hadoop-mapreduce/ha
doop-openstack.jar

● The Job/Job Execution/Job
Template framework assumes
java

● In order to do python, it likely
means spark-submit

A few notes when deploying Spark clusters via Sahara
Deploying Sahara

Machine Learning with Spark

● For ML techniques, broadly, each iteration tries to
fit a function to the data.

● Each new iteration refines the function
● Features: Characteristics of a single datapoint
● Labels: Outputs of a Machine Learning model
● Learning rate: How much each new iteration

changes the function
● Loss: How far from reality each label is
● Normalization: Penalizes complex functions. This

helps prevent overfitting

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift9

Basic overview of AI and AI training
Training AI

DataFrame Transformer Estimator

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift10

● Built on the regular Spark
RDD/DataFrame API

● SQL-like

● Lazy evaluation

● Notably transform() doesn't
trigger evaluation. Things
like count() do

● Supports a Vector type in
addition to regular datatypes

● Transformers add/change
data in a dataframe

● Transformers implement a
transform() method which
returns a modified
DataFrame

● Estimators are Transformers
that instead output a model

● Estimators implement a fit()
method which trains the
algorithm on the data

● Estimators can also give you
data about the model like
weights and
hyperparameters

● Can be saved/reused

Important Components in Spark ML
Spark Machine Learning

● CrossValidator allows you to select model
parameters based on results of parallel training

● Wraps a Pipeline, and executes several
pipelines in parallel with different parameters

● Requires a grid of parameters to train against

● Splits the dataset into N folds, with a ⅔ train ⅓
test split

● Requires a loss metric to optimize against,
Evaluator classes have these pre-baked

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift11

Automatic selection of the best model
Cross Validation

● After evaluating on all sets of parameters, the
best is trained and tested against the entire
dataset

● Parameter grid should ideally be small

● The folding of the dataset means that it's not
ideal for small datasets

● Still requires some expertise in making sure it
doesn't overfit, or that other errors don't occur

Example Code

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

training = spark.createDataFrame([
 (0, "a b c d e spark", 1.0),
 (1, "b d", 0.0),
 ...
], ["id", "text", "label"])

tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

paramGrid = ParamGridBuilder() \
 .addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
 .addGrid(lr.regParam, [0.1, 0.01]) \
 .build()

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift13

Spark CrossValidation Sample Code
Parallel Hyperparameter Training

crossval = CrossValidator(
 estimator=pipeline,
 estimatorParamMaps=paramGrid,
 evaluator=BinaryClassificationEvaluator(),
 numFolds=2) # use 3+ folds in practice
cvModel = crossval.fit(training)

test = spark.createDataFrame([
 (4, "spark i j k"),
 (5, "l m n"),
 (6, "mapreduce spark"),
 (7, "apache hadoop")
], ["id", "text"])

prediction = cvModel.transform(test)
selected = prediction.select("id", "text", "probability",
"prediction")
for row in selected.collect():
 print(row)

Right out of the manual:
https://spark.apache.org/docs/2.3.0/ml-tuning.html

● Boilerplate start sets up Spark
Session and training data

● Tokenizer takes in the input
strings and outputs tokens

● HashingTF generates features by
hashing based on the frequency
of the input

● LogisticRegression is one of the
pre-canned ML algorithms

● Pipeline sets up all the stages

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift14

Spark CrossValidation Sample Code
Parallel Hyperparameter Training

from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
from pyspark.ml.feature import HashingTF, Tokenizer
spark = SparkSession.builder.appName("SparkCV").getOrCreate()

training = spark.createDataFrame([
 (0, "a b c d e spark", 1.0),
 (1, "b d", 0.0),
 ...
], ["id", "text", "label"])

tokenizer = Tokenizer(inputCol="text", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
 outputCol="features")

lr = LogisticRegression(maxIter=10)

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

● ParamGrid is a grid of different parameters to
plug into our Pipeline segments from before

● CrossValidator is a wrapper around the pipeline
it gets passed, and executes each pipeline with
the values from the ParameterGrid

● The Evaluator parameter is the function we use
to measure the loss of each model

● numFolds is how much we want to partition the
dataset

● cvModel is our best model result from the
training.

● cvModel.bestModel is an alias

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift15

Spark CrossValidation Sample Code
Parallel Hyperparameter Training

paramGrid = ParamGridBuilder() \
 .addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
 .addGrid(lr.regParam, [0.1, 0.01]) \
 .build()

crossval = CrossValidator(
 estimator=pipeline, estimatorParamMaps=paramGrid,
 evaluator=BinaryClassificationEvaluator(),
 numFolds=2) # use 3+ folds in practice

cvModel = crossval.fit(training)

● The test dataset is simply an unlabeled dataset
with strings similar to the training dataset

● Predictions are generated as a new column by
running transform on the test dataset

● This adds the predicted values and their
probability as a new column

● Lastly, the code selects and prints several rows
to show the behavior of the code

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift16

Spark CrossValidation Sample Code
Parallel Hyperparameter Training

test = spark.createDataFrame([
 (4, "spark i j k"),
 (5, "l m n"),
 ...
], ["id", "text"])

prediction = cvModel.transform(test)

selected = prediction.select("id", "text", "probability",
 "prediction")

for row in selected.collect():
 print(row)

Sparkflow Method

Parameter Server with Replicated Models

Alternative Parallel Training Methodology

● The master node runs as a parameter
server

● The executor nodes all run copies of the
TensorFlow graph

● After a specified number of iterations,
they aggregate the weight updates to the
graph back on the master node

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift18

from pyspark.sql import SparkSession
from sparkflow.graph_utils import build_graph
from sparkflow.tensorflow_async import SparkAsyncDL
import tensorflow as tf
from pyspark.ml.feature import VectorAssembler, OneHotEncoder
from pyspark.ml.pipeline import Pipeline

spark =
SparkSession.builder.appName("SparkflowMNIST").getOrCreate()

def small_model():
 x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
 y = tf.placeholder(tf.float32, shape=[None, 10], name='y')
 layer1 = tf.layers.dense(x, 256, activation=tf.nn.relu)
 layer2 = tf.layers.dense(layer1, 256,
activation=tf.nn.relu)
 out = tf.layers.dense(layer2, 10)
 z = tf.argmax(out, 1, name='out')
 loss = tf.losses.softmax_cross_entropy(y, out)
 return loss

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift19

Sparkflow Method Sample Code
Alternative Parallel Training Model

df = spark.read.option("inferSchema",
"true").csv('mnist_train.csv')
mg = build_graph(small_model)

va = VectorAssembler(inputCols=df.columns[1:785],
outputCol='features')
encoded = OneHotEncoder(inputCol='_c0', outputCol='labels',
dropLast=False)

spark_model = SparkAsyncDL(
 inputCol='features',
 tensorflowGraph=mg,
 tfInput='x:0',
 tfLabel='y:0',
 tfOutput='out:0',
 tfLearningRate=.001,
 iters=20,
 predictionCol='predicted',
 labelCol='labels',
 verbose=1
)

p = Pipeline(stages=[va, encoded, spark_model]).fit(df)
p.write().overwrite().save("location")

Straight off github:
https://github.com/lifeomic/sparkflow

● MNIST for reference is usually one
of these kinds of datasets
containing images of handwritten
digits

● In the example code, it's been
transformed into a CSV

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift20

For reference, an example of the MNIST dataset
MNIST

Image retrieved from
https://chatbotslife.com/training-mxnet-part-1-
mnist-6f0dc4210c62

● This code is plain tensorflow

● A good option when your main
skillset is tensorflow

● The function returns the loss
metric to be minimized

● The rest of the model is
optimized later on in the code

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift21

Sparkflow Method Deeper Dive
Alternative Parallel Training Model

import tensorflow as tf

def small_model():
 x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
 y = tf.placeholder(tf.float32, shape=[None, 10], name='y')
 layer1 = tf.layers.dense(x, 256, activation=tf.nn.relu)
 layer2 = tf.layers.dense(layer1, 256, activation=tf.nn.relu)
 out = tf.layers.dense(layer2, 10)
 z = tf.argmax(out, 1, name='out')
 loss = tf.losses.softmax_cross_entropy(y, out)
 return loss

● spark.read pulls the MNIST in CSV
format into a spark dataframe.
Note the inferSchema bit, since
the data needs to be interpreted
as integers not strings (the
default)

● build_graph builds the actual
graph and serializes it to reside on
the parameter server. It takes our
small_model function from earlier

● The VectorAssembler does the
cleaning of the input columns into
feature vectors

● Finally it sets up a one-hot
encoder pipeline stage

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift22

Sparkflow Method Deeper Dive
Alternative Parallel Training Model

from sparkflow.graph_utils import build_graph
from pyspark.ml.feature import VectorAssembler, OneHotEncoder

df = spark.read.option("inferSchema", "true").csv(
 'swift://testdata/mnist_train.csv')

mg = build_graph(small_model)

#Assemble and one hot encode
va = VectorAssembler(inputCols=df.columns[1:785],
 outputCol='features')

encoded = OneHotEncoder(inputCol='_c0', outputCol='labels',
 dropLast=False)

● SparkAsyncDL is the major piece of this
code. It creates the parameter server,
replicates the graph, and instructs the
nodes to share updates

● The pipeline step creates the regular spark
pipeline and applies our vectorizer,
encoder, and tensorflow model to the data

● The last step just saves off the model

● Note that this doesn't optimize the
learning rate or other hyperparameters
automatically

The AI Thunderdome: Using OpenStack to accelerate AI training with Sahara, Spark, and Swift23

Sparkflow Method Deeper Dive
Alternative Parallel Training Model

from sparkflow.tensorflow_async import SparkAsyncDL
from pyspark.ml.pipeline import Pipeline

spark_model = SparkAsyncDL(
 inputCol='features',
 tensorflowGraph=mg,
 tfInput='x:0',
 tfLabel='y:0',
 tfOutput='out:0',
 tfLearningRate=.001,
 iters=20,
 predictionCol='predicted',
 labelCol='labels',
 verbose=1
)

p = Pipeline(stages=[va, encoded, spark_model]).fit(df)
p.write().overwrite().save("location")

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

THANK YOU

