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This talk will cover
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Overview

● Brief explanations of ML, Spark, and Sahara
● Some notes on preparation for Sahara
● (And some issues we hit in our lab while preparing for this talk)
● A look at Machine Learning concepts inside Spark
● Cross Validation and Model Selection
● Sparkflow architecture
● Example code



Big Data and OpenStack



● The data is already 
there. Why move it 
elsewhere to 
analyze it?

● Tools are already 
there to do the 
analysis
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Big Data and OpenStack
A lot of data resides on OpenStack already

From the user survey:
https://www.openstack.org/analytics
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● Sahara is a wrapper around Heat
○ It does more than just Spark too

● Basic architecture involves just Spark on 
compute nodes

● Spark cluster can directly access Swift 
via swift://container/object URLs

● Code deployed on Spark clusters can 
access things independently as well
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Sahara+Spark+Swift Architecture
Basic architecture outline



● Spark has a master/slave architecture

● The cluster manager can be either the built-in 
one, Mesos, Yarn, or Kubernetes

● Spark is built on top of the traditional 
Map/Reduce framework, but has additional 
tools, notably ones that include Machine 
Learning

● For TensorFlow, there are several frameworks 
that make training and deploying models on 
Spark a lot easier

● Workers have in-memory data cache - this is 
important to know when using TensorFlow
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Basic architecture outline
Spark Architecture Overview



Image modifications are 
needed

Ensure hadoop swift 
support is present

OpenStack job framework 
doesn't support Python
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● guestmount works great here

● pip install:

○ tensorflow or 
tensorflow-gpu

○ keras
○ sparkdl
○ sparkflow

● Add supergroup to ubuntu user

● java.lang.RuntimeException: 
java.lang.ClassNotFoundExcep
tion: Class 
org.apache.hadoop.fs.swift.s
native.SwiftNativeFileSystem 
not found

● This error indicates support is 
missing, may need to reinstall 
/usr/lib/hadoop-mapreduce/ha
doop-openstack.jar

● The Job/Job Execution/Job 
Template framework assumes 
java

● In order to do python, it likely 
means spark-submit

A few notes when deploying Spark clusters via Sahara
Deploying Sahara



Machine Learning with Spark



● For ML techniques, broadly, each iteration tries to 
fit a function to the data.

● Each new iteration refines the function
● Features: Characteristics of a single datapoint
● Labels: Outputs of a Machine Learning model
● Learning rate: How much each new iteration 

changes the function
● Loss: How far from reality each label is
● Normalization: Penalizes complex functions. This 

helps prevent overfitting
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Basic overview of AI and AI training
Training AI



DataFrame Transformer Estimator
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● Built on the regular Spark 
RDD/DataFrame API

● SQL-like

● Lazy evaluation

● Notably transform() doesn't 
trigger evaluation. Things 
like count() do

● Supports a Vector type in 
addition to regular datatypes

● Transformers add/change 
data in a dataframe

● Transformers implement a 
transform() method which 
returns a modified 
DataFrame

● Estimators are Transformers 
that instead output a model

● Estimators implement a fit() 
method which trains the 
algorithm on the data

● Estimators can also give you 
data about the model like 
weights and 
hyperparameters

● Can be saved/reused

Important Components in Spark ML
Spark Machine Learning



● CrossValidator allows you to select model 
parameters based on results of parallel training

● Wraps a Pipeline, and executes several 
pipelines in parallel with different parameters

● Requires a grid of parameters to train against

● Splits the dataset into N folds, with a ⅔ train ⅓ 
test split

● Requires a loss metric to optimize against, 
Evaluator classes have these pre-baked
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Automatic selection of the best model
Cross Validation

● After evaluating on all sets of parameters, the 
best is trained and tested against the entire 
dataset

● Parameter grid should ideally be small

● The folding of the dataset means that it's not 
ideal for small datasets

● Still requires some expertise in making sure it 
doesn't overfit, or that other errors don't occur



Example Code



from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

training = spark.createDataFrame([
    (0, "a b c d e spark", 1.0),
    (1, "b d", 0.0),
    ...
], ["id", "text", "label"])

tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), 
outputCol="features")
lr = LogisticRegression(maxIter=10)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

paramGrid = ParamGridBuilder() \
    .addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
    .addGrid(lr.regParam, [0.1, 0.01]) \
    .build()
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Spark CrossValidation Sample Code
Parallel Hyperparameter Training

crossval = CrossValidator(
           estimator=pipeline,
           estimatorParamMaps=paramGrid,
           evaluator=BinaryClassificationEvaluator(),
           numFolds=2)  # use 3+ folds in practice
cvModel = crossval.fit(training)

test = spark.createDataFrame([
    (4, "spark i j k"),
    (5, "l m n"),
    (6, "mapreduce spark"),
    (7, "apache hadoop")
], ["id", "text"])

prediction = cvModel.transform(test)
selected = prediction.select("id", "text", "probability", 
"prediction")
for row in selected.collect():
    print(row)

Right out of the manual:
https://spark.apache.org/docs/2.3.0/ml-tuning.html



● Boilerplate start sets up Spark 
Session and training data

● Tokenizer takes in the input 
strings and outputs tokens

● HashingTF generates features by 
hashing based on the frequency 
of the input

● LogisticRegression is one of the 
pre-canned ML algorithms

● Pipeline sets up all the stages
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Spark CrossValidation Sample Code
Parallel Hyperparameter Training

from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
from pyspark.ml.feature import HashingTF, Tokenizer
spark = SparkSession.builder.appName("SparkCV").getOrCreate()

training = spark.createDataFrame([
    (0, "a b c d e spark", 1.0),
    (1, "b d", 0.0),
    ...
], ["id", "text", "label"])

tokenizer = Tokenizer(inputCol="text", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
                      outputCol="features")

lr = LogisticRegression(maxIter=10)

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])



● ParamGrid is a grid of different parameters to 
plug into our Pipeline segments from before

● CrossValidator is a wrapper around the pipeline 
it gets passed, and executes each pipeline with 
the values from the ParameterGrid

● The Evaluator parameter is the function we use 
to measure the loss of each model

● numFolds is how much we want to partition the 
dataset

● cvModel is our best model result from the 
training.

● cvModel.bestModel is an alias
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Spark CrossValidation Sample Code
Parallel Hyperparameter Training

paramGrid = ParamGridBuilder() \
    .addGrid(hashingTF.numFeatures, [10, 100, 1000]) \
    .addGrid(lr.regParam, [0.1, 0.01]) \
    .build()

crossval = CrossValidator(
        estimator=pipeline, estimatorParamMaps=paramGrid, 
        evaluator=BinaryClassificationEvaluator(),
        numFolds=2)  # use 3+ folds in practice

cvModel = crossval.fit(training)



● The test dataset is simply an unlabeled dataset 
with strings similar to the training dataset

● Predictions are generated as a new column by 
running transform on the test dataset

● This adds the predicted values and their 
probability as a new column

● Lastly, the code selects and prints several rows 
to show the behavior of the code
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Spark CrossValidation Sample Code
Parallel Hyperparameter Training

test = spark.createDataFrame([
    (4, "spark i j k"),
    (5, "l m n"),
    ...
], ["id", "text"])

prediction = cvModel.transform(test)

selected = prediction.select("id", "text", "probability",
                             "prediction")

for row in selected.collect():
    print(row)



Sparkflow Method



Parameter Server with Replicated Models

Alternative Parallel Training Methodology

● The master node runs as a parameter 
server

● The executor nodes all run copies of the 
TensorFlow graph

● After a specified number of iterations, 
they aggregate the weight updates to the 
graph back on the master node
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from pyspark.sql import SparkSession
from sparkflow.graph_utils import build_graph
from sparkflow.tensorflow_async import SparkAsyncDL
import tensorflow as tf
from pyspark.ml.feature import VectorAssembler, OneHotEncoder
from pyspark.ml.pipeline import Pipeline

spark = 
SparkSession.builder.appName("SparkflowMNIST").getOrCreate()

def small_model():
    x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
    y = tf.placeholder(tf.float32, shape=[None, 10], name='y')
    layer1 = tf.layers.dense(x, 256, activation=tf.nn.relu)
    layer2 = tf.layers.dense(layer1, 256, 
activation=tf.nn.relu)
    out = tf.layers.dense(layer2, 10)
    z = tf.argmax(out, 1, name='out')
    loss = tf.losses.softmax_cross_entropy(y, out)
    return loss
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Sparkflow Method Sample Code
Alternative Parallel Training Model

df = spark.read.option("inferSchema", 
"true").csv('mnist_train.csv')
mg = build_graph(small_model)

va = VectorAssembler(inputCols=df.columns[1:785], 
outputCol='features')
encoded = OneHotEncoder(inputCol='_c0', outputCol='labels', 
dropLast=False)

spark_model = SparkAsyncDL(
    inputCol='features',
    tensorflowGraph=mg,
    tfInput='x:0',
    tfLabel='y:0',
    tfOutput='out:0',
    tfLearningRate=.001,
    iters=20,
    predictionCol='predicted',
    labelCol='labels',
    verbose=1
)

p = Pipeline(stages=[va, encoded, spark_model]).fit(df)
p.write().overwrite().save("location")

Straight off github: 
https://github.com/lifeomic/sparkflow



● MNIST for reference is usually one 
of these kinds of datasets 
containing images of handwritten 
digits

● In the example code, it's been 
transformed into a CSV
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For reference, an example of the MNIST dataset
MNIST

Image retrieved from
https://chatbotslife.com/training-mxnet-part-1-
mnist-6f0dc4210c62



● This code is plain tensorflow

● A good option when your main 
skillset is tensorflow

● The function returns the loss 
metric to be minimized

● The rest of the model is 
optimized later on in the code
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Sparkflow Method Deeper Dive
Alternative Parallel Training Model

import tensorflow as tf

def small_model():
    x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
    y = tf.placeholder(tf.float32, shape=[None, 10], name='y')
    layer1 = tf.layers.dense(x, 256, activation=tf.nn.relu)
    layer2 = tf.layers.dense(layer1, 256, activation=tf.nn.relu)
    out = tf.layers.dense(layer2, 10)
    z = tf.argmax(out, 1, name='out')
    loss = tf.losses.softmax_cross_entropy(y, out)
    return loss



● spark.read pulls the MNIST in CSV 
format into a spark dataframe. 
Note the inferSchema bit, since 
the data needs to be interpreted 
as integers not strings (the 
default)

● build_graph builds the actual 
graph and serializes it to reside on 
the parameter server. It takes our 
small_model function from earlier

● The VectorAssembler does the 
cleaning of the input columns into 
feature vectors

● Finally it sets up a one-hot 
encoder pipeline stage
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Sparkflow Method Deeper Dive
Alternative Parallel Training Model

from sparkflow.graph_utils import build_graph
from pyspark.ml.feature import VectorAssembler, OneHotEncoder

df = spark.read.option("inferSchema", "true").csv(
                            'swift://testdata/mnist_train.csv')

mg = build_graph(small_model)

#Assemble and one hot encode
va = VectorAssembler(inputCols=df.columns[1:785],
                     outputCol='features')

encoded = OneHotEncoder(inputCol='_c0', outputCol='labels',
                        dropLast=False)



● SparkAsyncDL is the major piece of this 
code. It creates the parameter server, 
replicates the graph, and instructs the 
nodes to share updates

● The pipeline step creates the regular spark 
pipeline and applies our vectorizer, 
encoder, and tensorflow model to the data

● The last step just saves off the model

● Note that this doesn't optimize the 
learning rate or other hyperparameters 
automatically
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Sparkflow Method Deeper Dive
Alternative Parallel Training Model

from sparkflow.tensorflow_async import SparkAsyncDL
from pyspark.ml.pipeline import Pipeline

spark_model = SparkAsyncDL(
    inputCol='features',
    tensorflowGraph=mg,
    tfInput='x:0',
    tfLabel='y:0',
    tfOutput='out:0',
    tfLearningRate=.001,
    iters=20,
    predictionCol='predicted',
    labelCol='labels',
    verbose=1
)

p = Pipeline(stages=[va, encoded, spark_model]).fit(df)
p.write().overwrite().save("location")
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