
Graham Dumpleton

Deploying to
 OpenShift
A GUIDE FOR BUSY DEVELOPERS

Compliments of

Graham Dumpleton

Deploying to OpenShift
A Guide for Busy Developers

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03248-9

[LSI]

Deploying to OpenShift
by Graham Dumpleton

Copyright © 2018 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Virginia Wilson and Nikki McDonald
Production Editor: Melanie Yarbrough
Copyeditor: Dwight Ramsey
Proofreader: Rachel Head

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2018: First Edition

Revision History for the First Edition
2018-03-05: First Release

This work is part of a collaboration between O’Reilly and Red Hat. See our statement of editorial independ‐
ence.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Deploying to OpenShift, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Preface. ix

1. The OpenShift Container Platform. 1
The Role of Containers 2
Orchestrating at Scale 3
Containers as a Service 4
Platform as a Service 4
Deploying Your Application 5

2. Running an OpenShift Cluster. 7
Using OpenShift Online 7
Installing OpenShift Origin 8
Launching Using Minishift 8
Running oc cluster up 10
Summary 11

3. Accessing the OpenShift Cluster. 13
Using the Web Console 13
Using the Command Line 14
Using the OpenShift REST API 17
Summary 18

4. Adding Applications to a Project. 19
The Role of a Project 19
Creating a Project 20
Adding a Collaborator 22
Deploying Applications 23
Deploying from the Catalog 24

iii

Deploying an Image 26
Deploying a Set of Resources 27
Summary 28

5. Deploying Applications from Images. 29
Deploying Your First Image 29
Scaling Up the Application 33
Runtime Configuration 33
Deleting the Application 34
Deploying Using the Web Console 34
Importing an Image 36
Pushing to the Registry 37
Images and Security 38
Summary 38

6. Building and Deploying from Source. 41
The Source Build Strategy 42
Deploying from Source 42
Creating a Separate Build 43
Triggering a New Build 45
Building from a Local Source 46
Binary Input Builds 46
Testing the Container Image 47
Build and Runtime Configuration 48
Summary 49

7. Building an Image from a Dockerfile. 51
The Docker Build Strategy 51
Security and Docker Builds 52
Creating the Build 52
Deploying the Image 53
Build and Runtime Configuration 53
Using an Inline Dockerfile 55
Summary 56

8. Understanding Source-to-Image Builders. 57
The Source-to-Image Project 57
Building the Application Image 58
Assembling the Source Code 59
Creating an S2I Builder Image 60
Building the S2I Builder Image 62
Using the S2I Builder with OpenShift 62

iv | Table of Contents

Adding an S2I Builder to the Catalog 63
Summary 64

9. Customizing Source-to-Image Builds. 65
Using Environment Variables 65
Overriding the Builder Scripts 66
Read-Only Code Repositories 68
Overriding the Runtime Image 68
Updating the Image Metadata 69
Summary 71

10. Using Incremental and Chained Builds. 73
Faster Builds Using Caching 73
Using Incremental Builds 74
Saving Artifacts from a Build 75
Restoring the Build Artifacts 75
Enabling Incremental Builds 76
Using Chained Builds 77
Summary 78

11. Webhooks and Build Automation. 79
Using a Hosted Git Repository 79
Accessing a Private Git Repository 80
Adding a Repository Webhook 82
Customized Build Triggers 83
Summary 83

12. Configuration and Secrets. 85
Passing Environment Variables 85
Working with Configuration Files 87
Handling of Secret Information 89
Deleting Configuration and Secrets 91
Summary 92

13. Services, Networking, and Routing. 93
Containers and Pods 93
Services and Endpoints 94
Connecting Between Projects 96
Creating External Routes 96
Using Secure Connections 98
Internal and External Ports 99
Exposing Non-HTTP Services 100

Table of Contents | v

Local Port Forwarding 100
Summary 101

14. Working with Persistent Storage. 103
Types of Persistent Storage 103
Claiming a Persistent Volume 105
Unmounting a Persistent Volume 106
Reusing a Persistent Volume Claim 106
Sharing Between Applications 106
Sharing Between Containers 107
Deleting a Persistent Volume 107
Copying Data to a Volume 108
Summary 108

15. Resource Quotas and Limits. 109
What Is Managed by Quotas 109
Quotas versus Limit Ranges 111
Requests Versus Limits 112
Resource Requirements 113
Overriding Build Resources 114
Summary 114

16. Monitoring Application Health. 115
The Role of a Readiness Probe 115
The Role of a Liveness Probe 116
Using an HTTP Request 116
Using a Container Command 117
Using a Socket Connection 118
Probe Frequency and Timeouts 118
Summary 120

17. Application Lifecycle Management. 121
Deployment Strategies 121
Rolling Deployment 122
Recreate Deployment 123
Custom Deployments 124
Container Runtime Hooks 125
Init Containers 126
Summary 127

18. Logging, Monitoring, and Debugging. 129
Viewing the Build Logs 129

vi | Table of Contents

Viewing Application Logs 130
Monitoring Resource Objects 131
Monitoring System Events 132
Viewing Container Metrics 132
Running an Interactive Shell 133
Debugging Startup Failures 133
Summary 134

Afterword. 137

Index. 139

Table of Contents | vii

Preface

OpenShift implements a polyglot platform for the deployment of web applications
and services. It uses containers in conjunction with a Security-Enhanced Linux (SELi‐
nux) environment to implement a secure multitenant environment suitable for the
enterprise. You can deploy OpenShift in your own infrastructure or on public clouds,
or you can use OpenShift Online, Red Hat’s cloud-based hosting service.

The latest version of OpenShift uses the industry-standard Kubernetes platform from
the Cloud Native Computing Foundation (CNCF) for managing and running appli‐
cations within containers at scale. The ability to run any application image is ensured
through adherence to image and runtime specifications from the Open Container
Initiative (OCI).

OpenShift offers you the ability to easily deploy your web application code directly
using a library of predefined image builders, or you can bring your own container
images. With support in OpenShift for features such as persistent volumes, you are
not limited to just running stateless 12-factor or cloud-native applications. Using
OpenShift, you can also deploy databases and many legacy applications that you
otherwise would not be able to run on a traditional Platform as a Service (PaaS) offer‐
ing.

OpenShift is a complete container application platform. It is a modern take on the
traditional PaaS that you can use with your existing applications, but that also pro‐
vides the power and flexibility to meet future needs.

Who Should Read This Book
This book is intended for developers who are evaluating OpenShift, or have already
decided to use it, and who seek a more in-depth knowledge of the core features of
OpenShift that are used to deploy applications. It will also be of interest to adminis‐
trators who are managing an OpenShift cluster and who need to provide assistance to
developers using the platform.

ix

https://www.cncf.io
https://www.opencontainers.org
https://www.opencontainers.org

The book is the third in a series of books from Red Hat about the latest version of
OpenShift. The prior books in the series are:

• OpenShift for Developers: A Guide for Impatient Beginners
• DevOps with OpenShift: Cloud Deployments Made Easy

Why I Wrote This Book
The first book, OpenShift for Developers, which I coauthored with Grant Shipley,
aimed to get you started as quickly as possible by skipping many of the details. Those
details are important, though, when you want to make the most of OpenShift. In this
book I wanted to fill in some of those gaps to give you that broader understanding of
OpenShift and how it can make your job of deploying applications to the cloud easier.

The topics I have chosen for the book are based on my experience of having to
answer many a question on public community forums (such as Stack Overflow and
Google Groups) and at conferences, in my role at Red Hat working as a Developer
Advocate for OpenShift.

The aim is that this book will act as a quick reference guide you can keep coming
back to in order to refresh your memory on commonly used patterns, or to learn
more about additional topics as you continue to use OpenShift.

Online Resources
As with many new technologies, OpenShift is still evolving as it adapts to the wide
range of use cases it is applied to. When you come to read this book, some informa‐
tion may not provide the most up-to-date picture. That’s why we encourage you to
check online resources for the latest details on OpenShift and how to use it.

The OpenShift documentation is a great place to start when you’re looking for infor‐
mation about OpenShift, from OpenShift Online to Red Hat’s enterprise products.

To learn more about OpenShift by working through online training exercises, you
can use the interactive learning portal for OpenShift, implemented on top of Kata‐
coda.

To run OpenShift Origin locally on your own computer in a virtual machine, you can
use Minishift.

If you are interested in the source code for OpenShift, it is available via the OpenShift
Origin project.

OpenShift Origin is the upstream open source project that is used to create the Red
Hat OpenShift product range. OpenShift Origin will always include all the latest fea‐

x | Preface

https://www.openshift.com/promotions/for-developers.html
https://www.openshift.com/promotions/devops-with-openshift.html
https://docs.openshift.com/
https://learn.openshift.com/
https://katacoda.com/
https://katacoda.com/
https://www.openshift.org/minishift/
https://github.com/openshift/
https://github.com/openshift/

tures, including experimental features, with support being provided by the OpenShift
community. You are warmly invited to clone the OpenShift Origin project code, send
in your contributions, or open an issue to report any problems you find.

The OpenShift product releases are created as regular snapshots of the OpenShift
Origin project. The product releases do not always have the very latest features
enabled, but if you have a commercial Red Hat subscription, the product releases
include support from Red Hat.

If you would like to try out the OpenShift enterprise products, a number of options
are available.

The first is to sign up to the Red Hat Developers Program. This is a free program and
allows you to access versions of Red Hat products for personal use on your own com‐
puter. One of the products made available through the program is the Red Hat Con‐
tainer Development Kit. This includes a version of OpenShift that you can run inside
a virtual machine on your own computer, but which is based on the OpenShift Con‐
tainer Platform product rather than OpenShift Origin.

A second way of trying out OpenShift Container Platform is via a free test drive with
the leading cloud service providers. This will set you up an OpenShift environment
running across a multinode cluster on the cloud provider of your choice.

Like what you see and just want to get your website out there and being used, without
needing to set up and run your own OpenShift cluster? Check out OpenShift Online,
Red Hat’s public cloud-based hosting service.

Want to hear about how others in the OpenShift community are using OpenShift, or
wish to share your own experiences? You can join OpenShift Commons.

In addition to hearing from OpenShift community members, also check out the
OpenShift blog, where regular articles from members of the OpenShift team at Red
Hat are published.

If you have questions about the development of OpenShift, you can reach the Open‐
Shift development team through the OpenShift mailing lists, or in the #openshift-
dev channel on IRC’s Freenode network. Community support for OpenShift Online
can be found on Google Groups or Stack Overflow.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xi

https://developers.redhat.com/
http://red.ht/2FrWpHC
http://red.ht/2FrWpHC
http://red.ht/2FsRtT6
http://red.ht/2FsRtT6
http://red.ht/2FrvKec
https://www.openshift.com/get-started/
https://commons.openshift.org
https://blog.openshift.com
http://red.ht/2FplfIu
http://bit.ly/2FtUnXS
https://stackoverflow.com

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

xii | Preface

http://oreilly.com/safari
http://oreilly.com/safari

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book has been a long time in the making, with it being put aside a number of
times as work and other life events intruded. Through all that time my wife, Wendy,
and children, Kara and Caiden, have continued to put up with me never seeming to
ever leave my home office. My children would wait patiently, although never patiently
enough, for the end of the week to come, when I would emerge from my office and
we would spend a good amount of time together over the weekend playing Minecraft.
With this book complete, I know they will be looking forward to the additional time I
will now be able to spend with them.

I would also like to thank the other members of the OpenShift evangelist team at Red
Hat with whom I work and who tolerate my grumpiness, especially when I can’t seem
to get OpenShift doing what I want it to do. Special thanks go to Jorge Morales, who
is always there when I need help in understanding how something works, or need a
sounding board for one of my crazy ideas. Jorge also provided valuable feedback on
this book. Luckily my Aussie accent doesn’t come through in my writing, as even after
two years of working with Jorge, when I speak he still often doesn’t have a clue what I
am saying.

Preface | xiii

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

The OpenShift Container Platform

The OpenShift platform was launched in May 2011. The source code was made avail‐
able through an open source project, with anyone being able to download it and use
it. Red Hat also offered a supported version of OpenShift for use in enterprise deploy‐
ments, and a hosted service called OpenShift Online.

OpenShift has always been implemented on top of containers, but technology is
always evolving. In June 2013 a major rewrite began to reimplement OpenShift on
top of the latest evolving technologies in the container space. Version 1.0 of Open‐
Shift Origin, based around Kubernetes and the Docker container runtime, was
released in June 2015. At the time of writing this book OpenShift 3.6 was the latest
version, with the 3.7 release imminent and new releases coming out on a quarterly
basis.

What exactly is OpenShift, though?

In simple terms, it is a platform to help you develop and then deploy applications to
one or more hosts. These can be public-facing web applications, or backend applica‐
tions including microservices or databases. Applications can be implemented in any
programming language you choose. The only requirement is that the application can
run within a container.

OpenShift can run anywhere you can run Red Hat Enterprise Linux (RHEL), CentOS,
or Fedora. This can be on public or private cloud infrastructure, directly on physical
hardware, or using virtual machines.

In this initial chapter you will learn more about the technologies that OpenShift uses,
and where it fits within the cloud computing ecosystem.

1

https://kubernetes.io

The Role of Containers
The National Institute of Standards and Technology (NIST) defines as part of their
definition of cloud computing three standard service models for the provision of
cloud computing services:

Software as a Service (SaaS)
The capability provided to the consumer is to use the provider’s applications run‐
ning on a cloud infrastructure. The applications are accessible from various client
devices through either a thin client interface, such as a web browser (e.g., web-
based email), or a program interface. The consumer does not manage or control
the underlying cloud infrastructure including network, servers, operating sys‐
tems, storage, or even individual application capabilities, with the possible excep‐
tion of limited user-specific application configuration settings.

Platform as a Service (PaaS)
The capability provided to the consumer is to deploy onto the cloud infrastruc‐
ture consumer-created or acquired applications created using programming lan‐
guages, libraries, services, and tools supported by the provider. The consumer
does not manage or control the underlying cloud infrastructure including net‐
work, servers, operating systems, or storage, but has control over the deployed
applications and possibly configuration settings for the application-hosting envi‐
ronment.

Infrastructure as a Service (IaaS)
The capability provided to the consumer is to provision processing, storage, net‐
works, and other fundamental computing resources where the consumer is able
to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, and deployed
applications; and possibly limited control of select networking components (e.g.,
host firewalls).

Under these traditional definitions for cloud service computing models, OpenShift
would be classified a PaaS. In both PaaS and SaaS models, containerization is often
used for separating applications from each other and from different users.

Containers as a technology have a long history, with forerunners being FreeBSD jails
and Solaris Zones. In Linux, support for containers revolves around the Linux Con‐
tainers project (LXC). This brought user-space tooling on top of Linux kernel features
such as cgroups and namespaces, with security additions from Seccomp and SELinux.
The LXC tools made the use of containers in Linux accessible, but it could still be a
fiddly process to set up and run applications in containers.

2 | Chapter 1: The OpenShift Container Platform

http://bit.ly/2GLLcPu

In 2013 a company called dotCloud, a PaaS provider, announced in a lightning talk at
PyCon US a tool called Docker. This tool was an outgrowth of the proprietary tech‐
nology that dotCloud used to help run applications in containers; it provided a wrap‐
per for making it easier to launch applications in containers using LXC.

The Docker tool was quickly picked up by developers as it addressed two key issues.
The first was a definition of a common packaging format for an image, which con‐
tained an application and all the dependencies it required, including operating system
libraries and programs. The second was tooling for building this image.

These together made it possible to create application images that could be easily
moved between different systems, to then be run in a container, with higher confi‐
dence that they would work out of the box.

The technology around the Docker tool was split out separately from the company
dotCloud and a new company, Docker Inc., was created to manage development of
the technology. Because of the growing interest in the technology, the Open Contain‐
ers Initiative (OCI) was later formed to provide an open governance structure for the
express purpose of creating open industry standards around the container format and
runtime. This process was seeded with specifications derived from the Docker tool.
OCI currently acts as the steward for two specifications: the Runtime Specification
(runtime-spec) and the Image Specification (image-spec).

Orchestrating at Scale
The Docker tool made it easier for developers to build application images and run a
single application in a container on a single host. But scaling up an application to
have multiple instances running on the same host, or across multiple hosts, required
additional software components to help orchestrate the deployment and running of
the application, as well as a router to load-balance traffic to each instance of the appli‐
cation.

During the initial phase of Docker adoption, no out-of-the-box solutions existed for
the orchestration and routing layer, which resulted in users handcrafting homegrown
solutions.

In mid-2014, Google announced the Kubernetes project, an open source system for
automating deployment, scaling, and management of containerized applications. This
provided one of the missing components required in trying to handle running con‐
tainers at scale.

At the time, Red Hat was already well into a project to reimplement OpenShift
around Docker but had been implementing its own orchestration layer. With the
announcement of Kubernetes, Red Hat decided to drop its own efforts, adopting
Kubernetes and becoming a major contributor to the project.

Orchestrating at Scale | 3

Kubernetes was subsequently released as 1.0 in July 2015, with the project being
donated to the Cloud Native Computing Foundation (CNCF). It has since become
the de facto standard for container orchestration.

Containers as a Service
Kubernetes does not fit any of the existing service model classifications for cloud
computing. This has resulted in the new name, Containers as a Service (CaaS), being
coined. This service model can be seen as similar to IaaS, except that instead of being
provided with a virtual machine, you are provided with a container. Figure 1-1 shows
where CaaS fits in among the other service models.

Figure 1-1. Cloud services

To run your application in a CaaS, you need to provide the application image you
have built, which contains your application and any operating system libraries and
programs you require. Although an application image contains a copy of these oper‐
ating system libraries and programs, it is only your application process that is run.

Platform as a Service
Using the CaaS capability of Kubernetes, OpenShift is able to deploy an application
from a container image stored in any image registry. Kubernetes alone does not pro‐
vide any support for building the container image. You need to run a build tool to
create your application image on a separate system and push that to an image registry
from which it can be deployed. This is because a CaaS focuses on just running con‐
tainers and lacks the capability of a PaaS, where you can provide your source code
and the platform will work out how to get that running in a container.

4 | Chapter 1: The OpenShift Container Platform

To provide the PaaS capability of being able to take source code and deploy it, Open‐
Shift adds automation for performing builds on top of Kubernetes. OpenShift sup‐
ports two main strategies for building from source code.

In the style of a traditional PaaS, OpenShift can take your application source code
and, using a builder for the programming language you are using, create your appli‐
cation image. You as a developer do not need to provide instructions on how to create
the container image; the platform will do this for you.

In addition, OpenShift can also accept source code that includes a set of instructions
to create the application image in a Dockerfile. This is what you need to do if building
a container image yourself using Docker, but OpenShift will do it for you, inside the
OpenShift platform.

In both cases, OpenShift will cache the application image in an image registry that it
provides. The application image will then be deployed from this internal image regis‐
try.

Using OpenShift to build the application image from a Dockerfile means you do not
need to have the Docker tool on your own system, nor do you need to use a separate
image registry to hold your images.

With both types of builds, OpenShift can pull the source code for the build from a
hosted Git repository. If you’re using a service such as GitHub, GitLab, or Bitbucket,
you can configure the Git repository hosting service to notify OpenShift whenever
you push changes to your code back to the hosted Git repository. This notification
can trigger a new build and deployment of your application.

This automation means that once you have set up your application in OpenShift, you
do not need to interact directly with OpenShift as you continue with your application
development. As soon as you push back changes to your hosted Git repository, Open‐
Shift will know and can build and redeploy the application automatically.

Deploying Your Application
By building on top of Kubernetes, adding its own automation for builds and deploy‐
ments, OpenShift operates as both a CaaS and a PaaS. In other words, OpenShift
implements a general-purpose container platform. You can deploy your own bespoke
applications, or you can import third-party applications such as databases, messaging
systems, or other business suites to support the business processes of your organiza‐
tion.

In this book you will learn about the different ways you can deploy applications to
OpenShift. This will include deploying from a prebuilt application image using the
CaaS functionality of OpenShift, and building from source code in the manner of a
PaaS.

Deploying Your Application | 5

You will also learn how to integrate your application into the OpenShift platform,
how to configure it through OpenShift, how to mount persistent volumes, how to
make it public so users can access it, and how to monitor and debug your application.

To interact with OpenShift you can use either a web console or a command-line cli‐
ent. This book will focus on using the command-line client.

The main application example that will be used throughout the book is a Python
application implemented using the Django web framework. This is the same sample
application that is used in many of the tutorials found on the OpenShift Interactive
Learning Portal. In addition to reading through this book, you can use those tutorials
to further investigate many of the topics we cover.

The source code for the sample application can be found on GitHub.

If you wish to work through the example in the book yourself, you can use the play‐
ground environments on the OpenShift Interactive Learning Portal. The playgrounds
don’t follow a set tutorial, and you are free to try anything you want.

You can also install OpenShift yourself, or use a hosted OpenShift service. The next
chapter will discuss options for running OpenShift, with the remainder of the book
then showing you how to use it so you can learn to deploy your own applications.

6 | Chapter 1: The OpenShift Container Platform

https://learn.openshift.com
https://learn.openshift.com
https://github.com/openshift-katacoda/blog-django-py

CHAPTER 2

Running an OpenShift Cluster

The easiest way to get started with OpenShift is to get access to a hosted version, such
as OpenShift Online from Red Hat.

To install and run OpenShift yourself, you can download the source from the
upstream OpenShift Origin project.

For quickly running OpenShift on your own computer, you can launch a prebuilt ver‐
sion of OpenShift.

In this chapter you will learn about these different options, including additional
details on how you can get OpenShift running locally using Minishift and oc
cluster up.

Using OpenShift Online
OpenShift Online is Red Hat’s publicly hosted OpenShift service. If you do not want
to install and manage your own OpenShift cluster, this is the option for you.

OpenShift Online provides a free starter tier, intended for experimentation, testing,
or development. When you are ready to move your application to production and
make it available to others to use, or you need additional resources beyond those pro‐
vided by the free tier, you can upgrade to the paid tier.

Outgrown OpenShift Online, but still do not want to install and manage OpenShift
yourself? Red Hat also offers OpenShift Dedicated. This service is similar to Open‐
Shift Online, but the OpenShift cluster is reserved for your use and is not shared by
other users outside your organization.

7

https://www.openshift.com/get-started/
https://www.openshift.com/dedicated/

Installing OpenShift Origin
If you prefer to install and run OpenShift yourself, you can install OpenShift Origin.
The recommended installation method for OpenShift Origin uses a set of Ansible
playbooks. Provide details about your environment and the machine nodes you have
available, run Ansible, and the cluster will be set up for you.

Configuring and installing an OpenShift cluster from scratch is not something that
will be covered in this book. You can find instructions in the Advanced Installation
documentation on the OpenShift Origin website.

OpenShift Origin is a community-supported distribution of OpenShift. If you would
prefer to run your own OpenShift cluster but have access to professional support
services, you can obtain a subscription for OpenShift Container Platform from Red
Hat.

Launching Using Minishift
For quickly starting up an OpenShift cluster locally, an alternative to building a clus‐
ter using OpenShift Origin is to start up a prebuilt system inside a virtual machine
(VM).

To start OpenShift inside a VM, you can use Minishift. This isn’t an OpenShift distri‐
bution in itself, but a tool that you can run to create a minimal VM that includes a
container service. Minishift then uses the OpenShift client oc to start up an Open‐
Shift cluster by downloading and launching a preformatted container image contain‐
ing OpenShift.

Running Minishift requires a hypervisor to run the VM containing OpenShift.
Depending on your host operating system, you have the choice of the following
hypervisors:

• macOS: xhyve (default), VirtualBox
• GNU/Linux: KVM (default), VirtualBox
• Windows: Hyper-V (default), VirtualBox

To download the latest Minishift release and view any release notes, visit the
Minishift releases page. If using macOS, you can also install Minishift using Home‐
brew. Before using Minishift, ensure you check out the installation instructions for
any prerequisites your system must satisfy.

With the Minishift program installed, you can begin installation and start up the
OpenShift cluster by running the minishift start command:

$ minishift start
Starting local OpenShift cluster using 'kvm' hypervisor...

8 | Chapter 2: Running an OpenShift Cluster

https://www.openshift.org/
http://bit.ly/2H3KHjC
http://bit.ly/2H3KHjC
https://www.openshift.com/container-platform/
https://www.openshift.org/minishift/
https://github.com/minishift/minishift/releases
https://brew.sh
https://brew.sh
https://docs.openshift.org/latest/minishift/getting-started/index.html

...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.99.128:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

By default Minishift attempts to use the virtualization driver native to the operating
system. To use a different driver, set the --vm-driver flag when running this com‐
mand. For example, to use VirtualBox, run minishift start --vm-

driver=virtualbox. For more information about the available options, run
minishift start --help.

When Minishift is first run, it will automatically download and install the OpenShift
oc client binary specific to your operating system. This will be installed in a cache
directory in your home directory, keyed by the version of OpenShift being run. Run
the command minishift oc-env to output instructions on how to set up your shell
environment so it can find the oc program:

$ minishift oc-env
export PATH="/Users/graham/.minishift/cache/oc/v1.5.0:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

To access the web console for OpenShift, run the command minishift console.
This will open up a browser client for you in the web console.

To determine the URL for the OpenShift cluster, for use when logging in from the
command line or accessing the web console from a browser, run the command
minishift console --url. The login credentials you should use with the OpenShift
cluster created by Minishift are:

• Username: developer
• Password: developer

To shut down the OpenShift cluster, run the command minishift stop. You can
restart it again using minishift start. All your work will be restored on a restart. To
delete the OpenShift cluster, run the command minishift delete.

When Minishift creates a cluster, it will use default settings for the number of CPUs,
memory available, and the size of the VM disk. It is recommended you override these
with values that better match what resources you have available, or need. This can be
done using options to minishift start the first time it is used to create the Open‐

Launching Using Minishift | 9

Shift cluster. You can override the default values for these resources, as well as the VM
driver used, using the minishift config command.

Minishift uses OpenShift Origin. For a version of Minishift that
uses OpenShift Container Platform from Red Hat, see the Red Hat
Container Development Kit.

Running oc cluster up
The main feature that Minishift provides is the creation of a virtual machine. For the
setup and starting of the OpenShift cluster within that VM, Minishift delegates con‐
trol to the command oc cluster up.

The oc program is the standard command-line client for OpenShift. If you already
have a local container service running on your computer, instead of using Minishift
and running OpenShift inside a VM, you can run it with the container service
instance you already have.

You can download an archive file containing the oc program for your operating sys‐
tem from the releases page for OpenShift Origin.

Before running oc cluster up, ensure you check the installation instructions as
there are a number of prerequisite steps you must perform to configure your local
system.

When you’re ready, to start OpenShift, run the command:

$ oc cluster up
-- Checking OpenShift client ... OK
-- Checking Docker client ... OK
-- Checking Docker version ... OK
-- Checking for existing OpenShift container ... OK
-- Checking for openshift/origin:v1.5.0 image ...
 Pulling image openshift/origin:v1.5.0
....
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://127.0.0.1:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

10 | Chapter 2: Running an OpenShift Cluster

https://developers.redhat.com/products/cdk/overview/
https://developers.redhat.com/products/cdk/overview/
https://github.com/openshift/origin/releases
https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md

To find the URL for the OpenShift web console, you can run oc whoami --show-
server. To shut down the OpenShift cluster, run oc cluster down.

The oc cluster up command is intended for local development
and testing, not for production use.
By default, when you run oc cluster up, anything you do within
the OpenShift cluster is not persistent. That is, when you run oc
cluster down, you will lose all your work.
In order for your work to be saved, you must supply additional
command-line options to oc cluster up. The same options must
be supplied when restarting it after a shutdown:

$ oc cluster up --use-existing-config \
 --host-config-dir $HOME/.oc-cluster-up/config \
 --host-data-dir $HOME/.oc-cluster-up/data

Run oc cluster up --help to find out what options are available,
and see the installation instructions for further information on
their use.

Summary
You can install OpenShift in numerous ways—direct to a physical machine, on a vir‐
tual machine, or in a private or public cloud. OpenShift would normally be installed
across a cluster of machines to provide the capability to run applications at scale.

Even if you are using a separate managed OpenShift environment, as a developer, it is
still a good idea to install Minishift on your own local machine. A local installation of
Minishift can be used to experiment with OpenShift or to try out a newer version.
You could also integrate Minishift into your development process, working on your
application locally before migrating the code, or an application image, into your pro‐
duction environment.

If you only want to experiment with OpenShift, a playground can be created on the
OpenShift Interactive Learning Portal. This will provide you with a temporary envi‐
ronment you can use through your browser, without needing to install anything on
your local machine.

Summary | 11

https://learn.openshift.com

CHAPTER 3

Accessing the OpenShift Cluster

At this point, you should have a basic understanding of the OpenShift platform and
what it can be used for. To deploy your own applications to an OpenShift cluster, you
can use either the OpenShift web console, or the oc command-line client.

Before you can do anything, though, you first need to log in to the OpenShift cluster.
As OpenShift is a multitenant environment you will use your own account.

If you have installed Minishift or run oc cluster up on your own computer, an
account is preconfigured for you. The username of that account will be developer.
Minishift and oc cluster up will accept any value for a password. If you log in with
a different username, it will automatically configure a new account.

If you are using a hosted OpenShift environment, such as OpenShift Online, the login
credentials will be what you signed up to the service with, or you may need to log in
with a third-party identity provider.

This chapter will describe how to log in to OpenShift through the web console and oc
command-line client. It will also explain how you can retrieve an access token for
your active login session, which can be used to access the OpenShift cluster when
using the REST API.

Using the Web Console
The easiest way to access and interact with OpenShift is through the web console. The
URL for the web console will be dictated by what was specified as the public URL for
the OpenShift cluster. Once the console is accessed, how you then log in will depend
on the configured identity provider.

In the simple case, the web console login page will ask you for your username and
password, as shown in Figure 3-1.

13

Figure 3-1. Web console login

In the case of an external OpenID Connect or OAuth authentication service provider
being used, it will be necessary to log in through the external service (Figure 3-2).

Figure 3-2. Web console login via Red Hat

For a new user, once you have logged in, you should be presented with the “Welcome
to OpenShift” screen and the option of creating a new project (Figure 3-3).

Figure 3-3. Web console welcome

Using the Command Line
The web console provides a convenient method for quickly interacting with and
viewing the state of applications you have deployed using OpenShift. But not every‐

14 | Chapter 3: Accessing the OpenShift Cluster

thing you may want to do, especially in a cluster or project administrator role, can be
done through the web console. You will therefore also need to be familiar with using
the OpenShift command-line tool, oc.

Always use a version of the oc command-line tool that matches the
version of the OpenShift environment you are using. If you use an
older version of the oc command-line client, you will not have
access to all the features of the newer version of OpenShift.
This will obviously be the case where the feature is dependent on a
new command type or command-line option implemented in the
oc command-line tool. When using an older client, you can also be
restricted in your ability to make queries about new types of
resource objects implemented by OpenShift.

If you do not already have the oc command-line tool, you can download the version
corresponding to the OpenShift cluster you are using from the web console by fol‐
lowing the steps in Figure 3-4. The same page also provides you with the command
you need to run to log in.

Figure 3-4. Downloading the command-line tool

Select the “?” drop-down menu from the navigation bar.

Select the Command Line Tools menu option.

Select the download link for your platform.

Click the copy icon to capture the login command, including the login token,
then paste it into your terminal window and run it.

Using the Command Line | 15

The form of the login command, with the token, is:

oc login https://api.starter-us-east-1.openshift.com --token=Sbqw....T3UU

The token used when you log in will periodically expire, and you will need to log in
again when it does. When this occurs, you can run oc login with no options:

$ oc login
Login failed (401 Unauthorized)
You must obtain an API token by visiting
 https://api.starter-us-east-1.openshift.com/oauth/token/request

This will direct you to an alternate page, shown in Figure 3-5, where you can obtain a
new token.

Figure 3-5. Obtaining a new access token

Utilizing an access token when logging in from the command line is the preferred
mechanism as it ensures that sessions will be expired periodically. When an Open‐
Shift cluster is not using an external identity provider, it may also allow login from
the command line using a username and password. If this is the case, running oc
login with no options will prompt you for your credentials:

$ oc login
Authentication required for https://127.0.0.1:8443 (openshift)
Username: developer
Password:
Login successful.

You don't have any projects. You can try to create a new project, by running

16 | Chapter 3: Accessing the OpenShift Cluster

 oc new-project <projectname>

For help on the specific options accepted by oc login, or any other command, run
the command but with the --help option:

$ oc login --help

To get general information about the oc command, run it with no options.

To get a list of all the commands that oc accepts, run it with the help command:

$ oc help

For details on common options accepted by all commands, run it with the options
command:

$ oc options

Many commands will accept --dry-run as an option. This can be used to validate
that the combination of options you passed the command were correct, without mak‐
ing any changes.

Using the OpenShift REST API
When you use the web console or oc command-line tool, it communicates with
OpenShift using a REST API endpoint. You can also access this REST API directly
using a simple HTTP client, or by using a custom client for a specific programming
language generated from the Swagger API specification for OpenShift.

The same access token used when logging in from the command line can be used
when making an HTTP call against the REST API. This token should be included as
part of the value for the Authorization header sent with the HTTP request.

An example of a curl command for requesting your user details via the REST API
was given in the page displayed for obtaining a new token (Figure 3-5):

curl -H "Authorization: Bearer 1CFH...ND5o" \
 "https://api.starter-us-east-1.openshift.com/oapi/v1/users/~"

If you are already logged in from the command line and need the token, you can also
obtain it by running the oc whoami --token command. This command could be
used in a script to obtain the token prior to making a request:

#!/bin/sh

SERVER=`oc whoami --show-server`
TOKEN=`oc whoami --token`

URL="$SERVER/oapi/v1/users/~"

Using the OpenShift REST API | 17

curl -H "Authorization: Bearer $TOKEN" $URL

As when logging in using oc login, this token will expire and will need to be
renewed.

The REST API can be used to manage end-user applications, the cluster, and the
users of the cluster. This book will not delve into how to use the REST API; for fur‐
ther information, see the OpenShift REST API documentation.

One further option for learning how the REST API can be used is to look at what the
oc command-line tool does when you use it. To see what REST API calls the oc client
tool makes in order to execute a command, run the command and pass --loglevel
9 as an option. This will show verbose messages about what oc is doing, including the
details and contents of the REST API calls.

Summary
All access to OpenShift is via the REST API. You can interact directly with the REST
API if you need to create your own tools to control or work with OpenShift, but nor‐
mally you would use the web console or oc command-line tool. If you are a devel‐
oper, especially a power user, you will predominantly use the command line.

When working with OpenShift using the command line, you can operate at two lev‐
els. You can create or edit raw resource definitions in OpenShift to control how an
application is deployed, or you can use commands and options implemented by the
oc command-line tool to make changes for you.

In this book the focus will be on using oc and the commands and options it provides.
This is a simpler path to using the capabilities of OpenShift and Kubernetes than
working with raw resource definitions.

18 | Chapter 3: Accessing the OpenShift Cluster

https://docs.openshift.org/latest/rest_api/index.html

CHAPTER 4

Adding Applications to a Project

Now that you know how to access your OpenShift cluster and can log in, you are
almost ready to start deploying your first application.

Applications can be deployed from an existing container image that you have built
outside the OpenShift cluster, or one that is supplied by a third party.

Or, if you have the source code for the application, you can have OpenShift build the
image for you. OpenShift can build an image from instructions provided by a Docker
file, or the source code can be run through a Source-to-Image (S2I) builder to pro‐
duce the container image.

OpenShift also includes ready-to-run container images for popular database products
such as PostgreSQL, MySQL, MongoDB, and Redis.

Before you can deploy any application, though, you first need to create a project in
the OpenShift cluster to contain your applications.

In this chapter you will learn what projects are used for and how to create them. You
will be provided with a quick tour of how you can find out what ready-to-run con‐
tainer images OpenShift provides, what languages are supported through the S2I
builders, and the methods for deploying an application from an image or a set of
resource definitions.

The Role of a Project
Whenever you work with OpenShift, you will work within the context of a project.
This is a walled namespace used to hold everything related to a set of applications.

When you create a project, it is owned by you and you are the administrator for that
project. Any application you deploy within the project is only visible to other applica‐

19

tions running in the same project, unless you choose to make it public outside the
OpenShift cluster.

You can deploy more than one application into a single project. You would usually do
this if they have tight coupling. Or, you could instead choose to always create a sepa‐
rate project for each application and selectively set up access between projects if they
needed to communicate with each other.

Creating a Project
When you access an OpenShift cluster for the first time, you will need to create a
project. An exception to this is when you are using Minishift or oc cluster up.
Because these are intended for local testing and development, for convenience they
will set up an initial project for you.

If you use the web console to access the OpenShift cluster and there aren’t any
projects, you will be presented with the option to add a new project (see Figure 4-1).

Figure 4-1. Adding a project

Clicking New Project will bring up the form in Figure 4-2. Enter the name of the
project and optionally provide a display name and description.

20 | Chapter 4: Adding Applications to a Project

Figure 4-2. Creating a new project

When you specify a name for a project, it will need to satisfy a couple of require‐
ments.

The first requirement is that the name you choose must be unique across the whole
OpenShift cluster. This means you cannot use a project name that is already in use by
another user.

The second requirement is that the name can only include lowercase letters, numbers,
and the dash character. This is necessary as the project name is used as a component
in the hostname assigned to an application when it is made visible outside the Open‐
Shift cluster.

Once you have created a project and are on the Overview_ page, you can jump back
to the project list (Figure 4-3) by clicking on the Home icon.

Figure 4-3. Project list

You can also jump between projects using the Projects drop-down menu in the top
banner of any project.

Creating a Project | 21

Projects can be created from the command line too, by using the oc new-project
command:

$ oc new-project myproject --display-name 'My Project'
Already on project "myproject" on server "https://localhost:8443".

You can add applications to this project with the 'new-app' command.
For example, try:

 oc new-app centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to build a new example application in Ruby.

You can list all projects you have access to using the oc projects command:

$ oc projects
You have one project on this server: "My Project (myproject)".

Using project "myproject" on server "https://localhost:8443".

The name of the current project, against which your commands will be applied, can
be determined by running the command oc project:

$ oc project
Using project "myproject" on server "https://localhost:8443".

When you have access to multiple projects, you can set the current project by run‐
ning oc project and specifying the name of the project:

$ oc project myproject
Now using project "myproject" on server "https://localhost:8443".

When you create a new project using oc new-project, the new project will automati‐
cally be set as the current project.

If you need to run a single command against a different project, you can pass the
name of the project using the --namespace option to any command that operates on
a project:

$ oc get templates --namespace openshift

The openshift project is a special project that acts as a repository for images and
templates available for use by everyone in the OpenShift cluster. Although it doesn’t
appear in your own project list, you can still query it for certain information.

Adding a Collaborator
As the owner of a project, initially you are the only one who can access it and work in
it. If you need to collaborate on a project with other users, you can add additional
members to the project. When adding a user to the project, they can be added in one
of three primary roles:

22 | Chapter 4: Adding Applications to a Project

admin

A project manager. The user will have rights to view any resource in the project
and modify any resource in the project except for quotas. A user with this role
for a project will be able to delete the project.

edit

A user that can modify most objects in a project, but does not have the power to
view or modify roles or bindings. A user with this role can create and delete
applications in the project.

view

A user who cannot make any modifications, but can see most objects in a project.

To add another user with edit role to the project, so they can create and delete appli‐
cations, you need to use the oc adm policy command. You must be in the project
when you run this command:

$ oc adm policy add-role-to-user edit <collaborator>

Replace <collaborator> with the name of the user as displayed by the oc whoami
command when run by that user.

To remove a user from a project, run:

$ oc adm policy remove-role-from-user edit <collaborator>

To get a list of the users who have access to a project and their roles, a project man‐
ager can run the oc get rolebindings command.

Membership of a project can also be edited from the web console by going to the
project list, clicking the three-dot menu icon for the project, and selecting View
Membership.

Deploying Applications
Applications can be deployed to OpenShift in a number of different ways, using the
web console and the command-line oc client.

The main methods for deploying an application are:

• From an existing container image hosted on an image registry located outside the
OpenShift cluster.

• From an existing container image that has been imported into the image registry
running inside the OpenShift cluster.

• From application source code in a Git repository hosting service. The application
source code would be built into an image inside OpenShift, using an S2I builder.

Deploying Applications | 23

• From image source code in a Git repository hosting service. The image source
code would be built into an image inside OpenShift using instructions provided
in a Dockerfile.

• From application source code pushed into OpenShift from a local filesystem
using the command-line oc client. The application source code would be built
into an image inside OpenShift using an S2I builder.

• From image source code pushed into OpenShift from a local filesystem using the
command-line oc client. The image source code would be built into an image
inside OpenShift using instructions provided in a Dockerfile.

To simplify deployment of applications that have multiple component parts, or that
require configuration to be provided when creating the application, OpenShift pro‐
vides a mechanism for defining templates. A template can be used to set up deploy‐
ment of one or more applications at the same time using any of the methods listed.
Parameters can be provided to a template when creating the applications, with values
being used to fill out any configuration in resource objects that are defined by the
template.

For maximum configurability and control, an application deployment can also be
directly described using a list of the resource objects to be created. These lists can be
provided as YAML or JSON.

Deploying from the Catalog
When you are in an empty project in the web console, you will be presented with the
option, as shown in Figure 4-4, to add a new application to the project.

Figure 4-4. Addin an application to a project

24 | Chapter 4: Adding Applications to a Project

Clicking on “Add to Project” will bring you to a catalog of application templates and
S2I builders, as shown in Figure 4-5, that have been preinstalled into the OpenShift
cluster. You can also get to this page by clicking “Add to Project” in the top banner of
any project and selecting Browse Catalog.

Figure 4-5. Browsing the catalog

The catalog is constructed automatically from a number of sources.

The list of S2I builders you can use is derived by looking for images in the current
project and the openshift project that have been labeled as builder images.

The list of application templates is generated by querying the list of template defini‐
tions in the current project and the openshift project.

The openshift project acts as a global repository for builder images and templates. If
an administrator wants to make available a builder image or application template to
the whole OpenShift cluster, this is where they should add them.

Because what is included in the openshift project is controlled by the administrator
of the OpenShift cluster, what you find listed in the catalog may differ between Open‐
Shift clusters. What appears can also differ based on whether OpenShift Origin or the
Red Hat OpenShift Container Platform product is used.

From the command line, the list of application templates can be obtained using the
command oc get templates. This will not return anything for an empty project or
when no templates have been added to the project. To list the templates available in
the openshift project, supply the --namespace openshift option.

Deploying from the Catalog | 25

To get a list of the images available, use the command oc get imagestreams. The
--namespace openshift option should again be supplied to list those in the open
shift project.

When you run this command, not all images listed may correspond to a builder
image. This is because an image is also constructed for the application image created
by running an S2I builder.

A better way of seeing from the command line what application templates and
builder images are available is to run the oc new-app -L command. This produces a
result similar to what would be available from the Browse Catalog page, combining
application templates and builder images for both the current project and the open
shift project in the output.

To search within the available application templates and builder images, use the filter
field in the catalog browser. From the command line, you can use the oc new-app -S
command, supplying the keyword to search for.

When you have found an entry matching what you need, you can select it from the
web console. This will then send you through a forms-based workflow to deploy the
application. On the command line, you will use oc new-app.

Deploying an Image
To deploy an existing container image, switch to the Deploy Image tab shown in
Figure 4-6.

Figure 4-6. Deploying an image

To use an image that resides in the OpenShift cluster, select Image Stream Tag and
then select the project that the image is owned by, the image, and the tag. You will be
able to see only projects that you are the owner of, other projects that you have been
explicitly granted access to, and the openshift project.

26 | Chapter 4: Adding Applications to a Project

To use an image that is hosted on an image registry outside the OpenShift cluster,
select Image Name and enter the name of the image, including the hostname of the
image registry if using an image registry other than Docker Hub.

If using the command line, images hosted on any image registry can be deployed
using the oc new-app command.

Deploying a Set of Resources
To deploy an application from a list of resource object definitions, switch to the
Import YAML/JSON tab shown in Figure 4-7.

Figure 4-7. Importing YAML/JSON definitions

The YAML or JSON definition can be uploaded from your local computer or entered
directly into the web page.

If you provide a template, you will be asked if you wish to apply the template immedi‐
ately to deploy an application or load it, resulting in its then being selectable from the
catalog browser and able to be used from the oc command-line client to deploy an
application.

If using the command line, an application can be created from a set of resources or a
template using oc new-app or oc create.

This book will not be going into details of how to create raw resource definitions or
templates, or how to deploy an application using them. For further information see
the OpenShift developer guide.

Deploying a Set of Resources | 27

https://docs.openshift.org/latest/dev_guide/index.html

Summary
Projects provide a space into which you can deploy your applications. You can choose
to do everything within a single project, or use multiple projects and selectively
enable access between projects so that different application components can commu‐
nicate with each other.

The same features that provide isolation between your own projects are what are used
to separate the projects of different users in a multitenant environment.

When you use OpenShift to deploy applications, you use your own user account, with
controls on what you can do. As a developer, you would not use an admin account. If
others need to work with you on an application, you can grant them the necessary
access to just the project that the particular application is running in.

User accounts and the additional level of isolation between namespaces provided by
the multitenant capabilities of OpenShift are key features that distinguish OpenShift
from how a standard Kubernetes environment works. These features are part of what
makes OpenShift more secure and a better option for enterprise environments.

28 | Chapter 4: Adding Applications to a Project

CHAPTER 5

Deploying Applications from Images

Now that you have created a project, you can move on to deploying an application.

In this chapter you will start out by deploying an application from a pre-existing con‐
tainer image hosted on an external image registry.

You would use this method if you created the image for the application outside the
OpenShift cluster, or the image was being made available by a third party.

Once you have deployed the application, you will make it public so users can access
it. You will then reconfigure the running application using environment variables,
and scale up the number of instances of the application in order to handle a growing
amount of traffic. You will also be shown how you can delete an application.

Deploying Your First Image
OpenShift supports deployment of container images hosted on any image registry
that can be accessed from the OpenShift cluster. The first image you will deploy is
stored on Docker Hub and is named openshiftkatacoda/blog-django-py. The applica‐
tion in the image implements a simple blog site.

The full name of the image used is docker.io/openshiftkatacoda/
blog-django-py. When you leave off the hostname for the image
registry, OpenShift will default to first looking for the image on any
global image registries that a cluster admin has specified in the
cluster configuration. It is typical to have the Docker Hub image
registry included in that list. A company image registry or the Red
Hat Container Registry might also be included.

29

To deploy the container image use the oc new-app command, providing it with the
location of the image. The --name option is to set the name for the deployed applica‐
tion. If a name is not supplied, it will default to the last part of the image name. We’ll
use the name blog:

$ oc new-app openshiftkatacoda/blog-django-py --name blog
--> Found Docker image 0f405dd (5 days old) from Docker Hub
 for "openshiftkatacoda/blog-django-py"

 ...

 * An image stream will be created as "blog:latest" that will track
 this image
 * This image will be deployed in deployment config "blog"
 * Port 8080/tcp will be load balanced by service "blog"
 * Other containers can access this service through the hostname "blog"

--> Creating resources ...
 imagestream "blog" created
 deploymentconfig "blog" created
 service "blog" created
--> Success
 Run 'oc status' to view your app.

When you create the deployment, a series of resource objects will be created that tell
OpenShift what it needs to do. In this case, an imagestream, deploymentconfig, and
service were created.

The imagestream is a record of the image you want deployed. The deploymentconfig
captures the details of how the deployment should be done. The service maintains a
mapping to instances of your application so it can be accessed.

Some resource object types have aliases that can be used in com‐
mands, or when they appear in command output. For example, svc
can be used in place of service, dc in place of deploymentconfig,
and is in place of imagestream. You can see a list of all resource
object types and any name aliases by running oc get. You can see
descriptions of the main resource object types by running oc
types.

When a container image is deployed from the command line using oc new-app, the
running container will not be visible outside the OpenShift cluster. In the case of a
web application, you can make it visible by exposing the service. This is done using
the oc expose command:

$ oc expose service/blog
route "blog" exposed

30 | Chapter 5: Deploying Applications from Images

This will create a resource object called a route.

With the application deployed and visible, you can check on the status of the overall
project using the oc status command:

$ oc status
In project My Project (myproject) on server https://127.0.0.1:8443

http://blog-myproject.127.0.0.1.nip.io to pod port 8080-tcp (svc/blog)
 dc/blog deploys istag/blog:latest
 deployment #1 deployed 1 minute ago - 1 pod

View details with 'oc describe <resource>/<name>' or list everything
with 'oc get all'.

To get a list of the instances of the application that were deployed you can use the
command oc get pods:

$ oc get pods
NAME READY STATUS RESTARTS AGE
blog-1-36f46 1/1 Running 0 1m

There will be only one at this point.

To get a list of the resource objects created for the application you can use the oc get
all command:

$ oc get all -o name --selector app=blog
imagestreams/blog
deploymentconfigs/blog
replicationcontrollers/blog-1
routes/blog
services/blog
pods/blog-1-36f46

To ensure only resources for the application you deployed are shown, you should use
a selector and match on the label app=blog, which was added to all the resource
objects created by the oc new-app and oc expose commands.

The pod resource object represents a group of one or more contain‐
ers, although in most situations a pod would hold only one con‐
tainer. You will see a unique pod for each instance of your
application. Containers in a pod are deployed together and are
started, stopped, and replicated as a group.
A replicationcontroller is created from the deploymentconfig.
It records a count of how many instances of your application
should be running at any point in time. OpenShift will create as
many pods as are needed to match the required count.

Deploying Your First Image | 31

The OpenShift web console, shown in Figure 5-1, can also be used to view the appli‐
cation. You will find a summary for the deployed application in the project overview.

Figure 5-1. Blog site overview with route

Visit the URL displayed in the application summary with a web browser and you will
be presented with the home page for the blog site (Figure 5-2).

Figure 5-2. Blog site home page

You can also run the command oc get routes to see details of any services that have
been exposed. The command will display the hostname that OpenShift has assigned
to the application.

32 | Chapter 5: Deploying Applications from Images

Scaling Up the Application
When oc new-app is used to deploy an application from a container image, only one
instance of the application will be started. If you need to run more than once instance
in order to handle the expected traffic, you can scale up the number of instances by
running the oc scale command against the deployment configuration:

$ oc scale --replicas=3 dc/blog
deploymentconfig "blog" scaled

When the web application is scaled up, OpenShift will automatically reconfigure the
router through which it is exposed to the public to load-balance between all instances
of the application.

If you run oc get pods again, you should now see three instances of the application.

Instead of manually scaling the number of instances, you can enable automatic scal‐
ing based on metrics collected for an application. For further information, check out
the OpenShift documentation on pod autoscaling.

Runtime Configuration
Configuration for an application can be supplied by setting environment variables in
the container or by mounting configuration files into the container.

You set required environment variables by using the --env option when running the
oc new-app command:

$ oc new-app openshiftkatacoda/blog-django-py --name blog \
 --env BLOG_BANNER_COLOR=green

Optional environment variables can be set later by running the oc set env com‐
mand against the deployment configuration:

$ oc set env dc/blog BLOG_BANNER_COLOR=green
deploymentconfig "blog" updated

When the environment variables are updated using oc set env, the application will
be redeployed automatically with the new configuration. If you want to see what envi‐
ronment variables will be set in the container, you can use oc set env with the --
list option:

$ oc set env dc/blog --list
deploymentconfigs blog, container blog
BLOG_BANNER_COLOR=green

The topic of configuration and environment variables will be covered in more detail
in Chapter 12.

Scaling Up the Application | 33

https://docs.openshift.org/latest/dev_guide/pod_autoscaling.html

Deleting the Application
When you no longer need the application, you can delete it using the oc delete
command.

When doing this, you need to be selective about which resource objects you delete to
ensure you delete only those for that particular application. This can be achieved by
using the label that was applied by the oc new-app and oc expose commands to the
resource objects created:

$ oc delete all --selector app=blog
imagestream "blog" deleted
deploymentconfig "blog" deleted
route "blog" deleted
service "blog" deleted

The pod and replicationcontroller may not be listed in the output from running
oc delete, but they will be deleted. This is because they are deleted as a side effect of
deleting the deploymentconfig for the application.

Deploying Using the Web Console
To deploy a pre-existing container image using the web console, select Add to Project
from within a project and follow the steps outlined in Figure 5-3.

34 | Chapter 5: Deploying Applications from Images

Figure 5-3. Deploy application image

Click on the Deploy Image tab.

Select Image Name to use an image stored on an external image registry.

Enter openshiftkatacoda/blog-django-py as the value for Image Name.

Press Enter, or click on the query icon to pull down details of the image.

Change the name for the application to blog. The deployment for the image can
be created by clicking Create at the bottom of the page.

The route to expose the service outside the OpenShift cluster can be created from the
overview page for the project by selecting Create Route (Figure 5-4).

Deploying Using the Web Console | 35

Figure 5-4. The Create Route link

Services, networking, and routes will be covered in more detail in Chapter 13.

The overview page also provides the ability to scale up or down the number of instan‐
ces of the deployed web application. Use the up and down arrows to the right of the
circle showing the number and status of the running pods.

Importing an Image
When you deploy an application from an existing container image hosted on an
external image registry, a copy of the image is downloaded and stored into an image
registry internal to OpenShift. The image is then copied from there to each node in a
cluster where the application is run.

In order to track the image that has been downloaded, an image stream definition is
created. To see the list of the image stream definitions, run oc get is:

$ oc get is
NAME DOCKER REPO TAGS UPDATED
blog 172.30.118.67:5000/book/blog latest About a minute ago

The <IP>:<PORT> shown under DOCKER REPO is the address of the internal image reg‐
istry.

Because the image is being used as part of an application deployment, it is labeled
with the app label for the application. If you delete the application using the label, this
will also delete the image stream and image.

If you need to deploy multiple separate applications from one image, you should
import the image into OpenShift first using oc import-image:

$ oc import-image openshiftkatacoda/blog-django-py --confirm
The import completed successfully.

Name: blog-django-py
...

You can then deploy the applications from the imported image:

$ oc new-app blog-django-py --name blog

36 | Chapter 5: Deploying Applications from Images

In the web console, instead of the Image Name option on the Deploy Image page, you
would use the Image Stream Tag option.

Because the image is imported prior to deploying an application, it is not tagged with
the app label of a specific deployment. When you delete any of the applications using
the label, you will not delete the image stream, leaving it in place for the other appli‐
cations that depend on it.

Pushing to the Registry
The methods described thus far for deploying from an image relied on being able to
pull the image from an external image registry. If you are using tools on your own
local computer to build an image you can bypass the need to first push the image to
an external image registry and instead push directly to the internal image registry of
OpenShift.

To use the internal image registry, you need to know the address for accessing it. This
information is not available from either the OpenShift web console or the oc
command-line client, so you will need to ask the administrator for the OpenShift
cluster if the internal image registry is accessible and what hostname and port it uses.
If using a hosted OpenShift service, check its documentation.

For OpenShift Online, the internal image registry is accessible using an address of the
form:

registry.<cluster-name>.openshift.com:443

To log in with the docker command, run:

$ docker login -u `oc whoami` -p `oc whoami --show-token` \
 registry.pro-us-east-1.openshift.com:443
Login Succeeded

Before you can push an image, you need to create an empty image stream for it using
oc create imagestream.

$ oc create imagestream blog-django-py

Next, tag the local image you wish to push with the details of the image registry, your
project in OpenShift, and the name of the image stream and image version tag:

$ docker tag blog-django-py \
 registry.pro-us-east-1.openshift.com:443/book/blog-django-py:latest

You are then ready to push the image to the OpenShift internal image registry:

$ docker push registry.pro-us-east-1.openshift.com:443/book/blog-django-py

The application can then be deployed using the image stream name.

Pushing to the Registry | 37

Images and Security
When your application is deployed to OpenShift the default security model will
enforce that it is run using an assigned Unix user ID unique to the project you are
deploying it into. This behavior is implemented as part of the multitenant capabilities
of OpenShift, but is also done to prevent images being run as the Unix root user.

Although containers provide a sandbox environment designed to prevent applica‐
tions from being able to interact with the underlying host operating system, if a secu‐
rity vulnerability in the container runtime arose that allowed an application to break
out of the sandbox, and the application were running as root, it could become root on
the underlying host.

Best practice for images is to design them to be able to run as any Unix user ID. Many
images available on public image registries do not adhere to such a practice and need
to run as root to work, even though they have no requirement for elevated privileges.

This means that in a typical OpenShift environment, not all images you find on pub‐
lic image registries will work.

If it is your own image, you should redesign the image so it does not have to be run as
root. If it does genuinely have a requirement to run as root, then only a cluster admin
can grant the ability to do that.

To allow any applications deployed within a project the ability to run as the user the
container image specifies, including root, a cluster admin can run against a project
the command:

$ oadm policy add-scc-to-user anyuid -z default

A cluster admin would only want to allow this after the risks associated with running
the image as root have been assessed. It is never good practice to run as root arbitrary
images taken from public image registries.

For further information on this topic, see the OpenShift documentation on managing
security context constraints and guidelines on creating images.

Summary
Deploying a pre-existing container image in OpenShift is possible due to the Con‐
tainer as a Service (CaaS) capabilities provided by Kubernetes. When using a stan‐
dard Kubernetes installation, the image would need to be pulled from an external
image registry.

When using OpenShift, you can still pull images directly from an external image reg‐
istry when deploying an application, but OpenShift also provides an image registry as
part of the environment. You can push an image into the internal image registry, or

38 | Chapter 5: Deploying Applications from Images

https://docs.openshift.org/latest/admin_guide/manage_scc.html
https://docs.openshift.org/latest/admin_guide/manage_scc.html
https://docs.openshift.org/latest/creating_images/guidelines.html

you can set up an image stream definition such that, when deploying the image, it
will be automatically pulled into and cached in the internal image registry. When
deploying an image from the web console or command line, OpenShift will automati‐
cally set up this image stream for you.

Hosting of an image registry internal to OpenShift in order to cache images speeds up
the ability to deploy applications. As when deploying an application to a node in a
cluster, the image need only be pulled from the local internal image registry rather
than having to reach out to the external image registry.

Although many images from external sources will work in OpenShift, the default
restrictions in place, which prevent applications running as the Unix root user, may
mean that images need to be modified to work. Alternatively, security can be relaxed
to allow images to run as the user the image specifies. Best practice is to ensure
images can run as an arbitrarily assigned Unix user ID and not as a specific Unix user
ID.

Summary | 39

CHAPTER 6

Building and Deploying from Source

When you deploy a pre-existing container image, if this is your own image, it means
you needed to have separate tooling available to construct that image. You also had to
upload the image to an image registry from which OpenShift could pull it down, or
push the image into the internal image registry of OpenShift.

To simplify the release management process for an application, OpenShift provides
the ability to build the image for you. You would use this when you want to automate
the complete workflow, including the building of the image, any testing of the image,
and then deployment.

OpenShift provides four different build strategies:

Source
This uses Source-to-Image to produce ready-to-run images by injecting applica‐
tion source (or other assets) into a builder image.

Docker
This uses docker build to take a Dockerfile and associated source files and cre‐
ate a runnable image.

Pipeline
This uses Jenkins and a workflow defined by a Jenkinsfile to create a pipeline for
building a runnable image.

Custom
This uses your own custom image to control the build process for creating the
runnable image.

In this chapter you will learn how to use the Source build strategy to build and deploy
an application from source code in a hosted Git repository, or source code pushed
into OpenShift from your local computer.

41

Details of how to use the Docker build strategy will be covered in Chapter 7. How‐
ever, this book will not go into the last two build strategies. See the OpenShift docu‐
mentation for more details on the Pipeline and Custom build strategies.

The Source Build Strategy
The Source build strategy uses the Source-to-Image (S2I) tool to build a runnable
image from your application source code. To build from application source, a hosted
Git repository is required containing the source files. This Git repository must be
accessible to the OpenShift cluster where you perform the builds.

OpenShift provides S2I builders for common programming languages including Java,
NodeJS, Perl, PHP, Python, and Ruby. The builders will take your application source
code, compile it if necessary, and integrate it with the application server stack pro‐
vided with the builder image. When the container is run, the server will be started
and your application code run.

Builder images are not restricted to being used to build applications from source
code. Any form of input data can be combined with the builder image to create a
runnable image.

To illustrate the Source build strategy, you will deploy the same web application as in
the previous chapter. Whereas in the last chapter you deployed it using a pre-existing
container image, this time you will deploy it from the application source code. The
web application in question is implemented using the Python programming lan‐
guage, so you will use a Python S2I builder.

Deploying from Source
In the previous chapter, to deploy the blog site container image you used the com‐
mand:

$ oc new-app openshiftkatacoda/blog-django-py --name blog

This took the pre-existing container image openshiftkatacoda/blog-django-py from
Docker Hub, deployed it, and started up the web application.

To deploy from the application source code, this time use the command:

$ oc new-app --name blog \
 python:3.5~https://github.com/openshift-katacoda/blog-django-py

In place of the image name, the name of the S2I builder and a URL for a repository
containing the source files for the web application are used. These are combined into
a single argument to the command by inserting ~ between the two values. The oc
new-app command will interpret this special combination as indicating that the
Source build strategy should be used.

42 | Chapter 6: Building and Deploying from Source

http://bit.ly/2CynweL
http://bit.ly/2CxoN5Y
https://github.com/openshift/source-to-image

The result of running this command is:

--> Found image 956e2bd (5 days old) in image stream "openshift/python"
 under tag "3.5" for "python"

 Python 3.5

 Platform for building and running Python 3.5 applications

 Tags: builder, python, python35, rh-python35

 * A source build using source code from
 https://github.com/openshift-katacoda/blog-django-py will be created
 * The resulting image will be pushed to image stream "blog:latest"
 * Use 'start-build' to trigger a new build
 * This image will be deployed in deployment config "blog"
 * Port 8080/tcp will be load balanced by service "blog"
 * Other containers can access this service through the hostname "blog"

--> Creating resources ...
 imagestream "blog" created
 buildconfig "blog" created
 deploymentconfig "blog" created
 service "blog" created
--> Success
 Build scheduled, use 'oc logs -f bc/blog' to track its progress.
 Run 'oc status' to view your app.

In addition to the resource objects created when you deployed from an image, a
buildconfig has been created. This captures details on how to build the image inside
OpenShift. A buildconfig can also be referenced using the bc alias.

To monitor the building of the application image as it occurs, you can run the com‐
mand:

$ oc logs -f bc/blog

You can expose the service outside the OpenShift cluster by running:

$ oc expose svc/blog

Use the web console to view the URL for accessing the web application, or run the oc
get routes/blog command to determine the unique hostname assigned to it. If you
visit the site, you should again be presented with the blog site home page.

Creating a Separate Build
When the Source build strategy is invoked by oc new-app, it sets up two steps. The
first step is to run the build using S2I, combining the source files with the builder
image to create the runnable image. The second step is to deploy the runnable image
and start up the web application.

Creating a Separate Build | 43

You can perform the build step separately by running the oc new-build command
instead of the oc new-app command:

$ oc new-build --name blog \
 python:3.5~https://github.com/openshift-katacoda/blog-django-py
 --> Found image 956e2bd (5 days old) in image stream "openshift/python"
 under tag "3.5" for "python"

 Python 3.5

 Platform for building and running Python 3.5 applications

 Tags: builder, python, python35, rh-python35

 * A source build using source code from
 https://github.com/openshift-katacoda/blog-django-py will be created
 * The resulting image will be pushed to image stream "blog:latest"
 * Use 'start-build' to trigger a new build

 --> Creating resources with label build=blog ...
 imagestream "blog" created
 buildconfig "blog" created
 --> Success
 Build configuration "blog" created and build triggered.
 Run 'oc logs -f bc/blog' to stream the build progress.

The output looks similar, but the deploymentconfig and service resource objects
are not created.

When the build has completed, the runnable image created is saved away as the image
stream called blog. To deploy that image, the oc new-app command is used, but this
time the name of the imagestream created by the build is supplied instead of the
details of the builder image and repository URL:

$ oc new-app blog
--> Found image 6792c9e (32 seconds old) in image stream "myproject/blog"
 under tag "latest" for "blog"

 myproject/blog-1:0b39e4f7

 Platform for building and running Python 3.5 applications

 Tags: builder, python, python35, rh-python35

 * This image will be deployed in deployment config "blog"
 * Port 8080/tcp will be load balanced by service "blog"
 * Other containers can access this service through the hostname "blog"

--> Creating resources ...
 deploymentconfig "blog" created
 service "blog" created

44 | Chapter 6: Building and Deploying from Source

--> Success
 Run 'oc status' to view your app.

The service once again can be exposed using oc expose.

Triggering a New Build
In the event that the source files used as input to the Source build strategy have
changed, a new build can be triggered using the oc start-build command:

$ oc get bc
NAME TYPE FROM LATEST
blog Source Git 1

$ oc start-build bc/blog
build "blog-2" started

Even though you created the build separately from setting up the deployment, when
the build has completed and the imagestream updated, a redeployment will be auto‐
matically triggered. This occurs because oc new-app automatically sets up an image
change trigger in the deployment configuration.

Triggers are also defined as part of the build configuration. The first of these is an
additional image change trigger. This trigger will result in a rebuild if the S2I builder
image python:3.5 is updated.

This is an important feature of the build process. When an S2I builder is used to cre‐
ate a number of different applications from different source files, if a security fix were
available, pulling in an update to a builder image would automatically trigger a
rebuild and redeployment of all the applications that use it. This makes it easy to
quickly update applications when needing to patch images that they use.

When supplying the name of the S2I builder, if you do not specify a
version tag, it will default to using the latest tag. In the case of the
Python S2I builder, at the time of writing this book, latest map‐
ped to 3.5. Were the S2I builder for Python 3.6 later installed and
the latest tag remapped to reference it, this would result in the
application being rebuilt with the newer version of Python. If your
application code was not ready for Python 3.6, this could result in
the build failing or your application not running correctly. It is rec‐
ommended that where version tags are used on S2I builders you
specify the exact version you want and avoid using latest.

Additional triggers are also defined in the build configuration to track source code
changes. You can configure the hosting service for your source code repository to
notify OpenShift whenever code changes are pushed to your repository. The source

Triggering a New Build | 45

code trigger will then ensure the latest code is pulled down and the S2I build process
run against it to generate the updated application image, with the application also
being redeployed as a result. The topic of automating builds when source code
changes are made will be covered further in Chapter 11.

Building from a Local Source
The build configuration that was set up used source files held in a hosted source code
repository. To rebuild your application, your code changes had to be pushed up to the
repository. Although the build is linked to the hosted source code repository, one-off
builds can bypass the repository and use source files from a local filesystem.

Building from a local source is triggered using oc start-build, with the location of
the local source directory specified using the --from-dir option:

$ oc start-build bc/blog --from-dir=.
Uploading directory "." as binary input for the build ...
build "blog-3" started

To revert to using source files held in the hosted code repository, start a new build
without specifying an input source for the files:

$ oc start-build bc/blog
build "blog-4" started

Binary Input Builds
The variation on a build used to run a single build from a local source is called a
binary input source build. This is useful during the development of an application, as
you can iterate on changes without needing to commit and push changes up to the
repository. You only commit and push up changes when you have checked the result
and are finished.

A build configuration can be set up from the outset as a binary input source build. In
this configuration it would not be linked to a hosted source code repository, and all
builds would need to be triggered manually and the source files supplied.

To create a binary input build configuration, use oc new-build and supply the
--binary option:

$ oc new-build --name blog --binary --strategy=source --image-stream python:3.5
--> Found image 440f01a (6 days old) in image stream "openshift/python"
 under tag "3.5" for "python"

 Python 3.5

 Platform for building and running Python 3.5 applications

46 | Chapter 6: Building and Deploying from Source

 Tags: builder, python, python35, rh-python35

 * A source build using binary input will be created
 * The resulting image will be pushed to image stream "blog:latest"
 * A binary build was created, use 'start-build --from-dir' to trigger
 a new build

--> Creating resources with label build=blog ...
 imagestream "blog" created
 buildconfig "blog" created
--> Success

The initial and subsequent builds are triggered using oc start-build, supplying the
--from-dir option to use source files from a local directory:

$ oc start-build blog --from-dir=.
Uploading directory "." as binary input for the build ...
build "blog-1" started

Because the build configuration isn’t linked to a source code repository and oc
start-build must be manually run each time, applications cannot be automatically
rebuilt and redeployed if an S2I builder image has changed. This is because the input
source would not be available to the build.

Binary input builds are useful where you have an existing toolchain for creating
application binaries or components to be included in an image. An example is creat‐
ing a Java WAR file and then using an S2I builder to inject that into a base image con‐
taining the Java servlet container runtime.

Testing the Container Image
The image created by the build process, when deployed, will be untested. If you want
to be able to run unit tests on the application source code used in the build or verify
the image before it’s pushed to the internal image registry, you can use a post-commit
hook on a build.

The test is run by launching a new container with the recently built image and run‐
ning the post-commit hook command inside the container. If the command run by
the build hook returns a nonzero exit code, the resulting image will not be pushed to
the registry and the build will be marked as having failed.

To specify the command to run as the post-commit hook, run the oc set build-
hook command. For example:

$ oc set build-hook bc/blog --post-commit --script "powershift image verify"

When the --script option is used to specify the command, the original image entry‐
point will be left as is, with the image command being overridden. If the --command
option is used to specify the command, it will be used to replace the original image

Testing the Container Image | 47

entrypoint. If -- is used, arguments to pass to the original image command can be
supplied.

To remove a build hook, the --remove option can be used.

When running unit tests from a post-commit hook, you should avoid contacting
other services, as the container will be run in the same project as your deployed appli‐
cation. This is to avoid accidentally running tests against your production services. If
a database is required for the tests, run a local filesystem–based database such as
SQLite.

For more complex end-to-end integration tests, use a separate project from your pro‐
duction environment for running builds and tests. When the image has passed tests,
you can promote it into the project used for production. Pipelines using an integrated
Jenkins installation can be used to manage advanced builds. For more details see the
OpenShift documentation on pipelines.

Build and Runtime Configuration
Similarly to when deploying an application from a container image, environment
variables to be set when the container is run can be specified using the --env option
to oc new-app. This can be done when deploying directly from source code, or when
using oc new-app to deploy the image created by a distinct build step.

If it is necessary to set environment variables for the build step and you are deploying
directly from source code, use the --build-env option to oc new-app:

$ oc new-app --name blog --build-env UPGRADE_PIP_TO_LATEST=1 \
 python:3.5~https://github.com/openshift-katacoda/blog-django-py

If using the two-step approach of invoking oc new-build and oc new-app, the envi‐
ronment variables specific to the build step should be passed to oc new-build using
the --env option:

$ oc new-build --name blog --env UPGRADE_PIP_TO_LATEST=1 \
 python:3.5~https://github.com/openshift-katacoda/blog-django-py

If the environment variables need to be added after the build configuration has been
created, the oc set env command can be used:

$ oc set env bc/blog UPGRADE_PIP_TO_LATEST=1
buildconfig "blog" updated

Build-time environment variables might be required to set proxy details or customize
the build process implemented by the S2I builder. You can see the environment vari‐
ables that are being set for the build by using oc set env with the --list option.

48 | Chapter 6: Building and Deploying from Source

https://docs.openshift.org/latest/dev_guide/openshift_pipeline.html

$ oc set env bc/blog --list
buildconfigs blog
UPGRADE_PIP_TO_LATEST=1

Although the environment variables are specified in the build configuration, they will
also be set in the image created and visible to the application when it is deployed.

Summary
The ability to deploy an application from source code, with OpenShift building the
application image for you, is a feature of the Platform as a Service (PaaS) capabilities
provided by OpenShift. This is an additional layer of functionality that is built on top
of Kubernetes.

The Source build strategy uses the Source-to-Image tool to build a runnable image
from your application source code. OpenShift provides S2I builders for many com‐
mon programming languages. You can also create your own S2I builder images if you
need to support a custom application stack.

An automated build and deployment mechanism means that when the build is com‐
plete and any tests successfully run, the application image will be deployed.

Summary | 49

CHAPTER 7

Building an Image from a Dockerfile

Using an S2I builder to create an application image simplifies the build process, as the
builder does all the hard work for you. To make it simple, the author of the S2I
builder will have made some decisions in advance about what application server stack
is used, how it is configured, and how your application source code needs to be struc‐
tured.

Although you can override the S2I build and deployment process for an application,
the extent of the customizations you can make is restricted. You cannot, for example,
install additional operating system packages or run any actions that require root priv‐
ileges.

In order to have full control over how the image is built and the application run, you
will need to use the Docker build strategy.

In this chapter you will learn how you can build a container image in OpenShift from
a Dockerfile using the Docker build strategy. The container image produced can be
an application image or your own custom S2I builder image.

The Docker Build Strategy
The Docker build strategy takes the instructions from a Dockerfile and uses them to
construct a container image. The Dockerfile and associated files required to con‐
struct the image need to be in a hosted source code repository accessible to the Open‐
Shift cluster where you perform the builds.

This strategy can be used to construct an application image or an S2I builder image.
By having OpenShift perform the build, you avoid the need to have separate infra‐
structure to create the image. The building of the image can also be linked via image
triggers to any builds or deployments dependent on the image. An update to the

51

image will therefore trigger the subsequent builds and deployments, automating your
workflow.

To illustrate how to set up a build from a Dockerfile, we are going to build the same
image we used in Chapter 5 to deploy our blog site, but do it inside OpenShift. We
will then do a quick recap on how to deploy the image. This time we will use the
locally built image rather than that we pulled down from the external image registry.

Security and Docker Builds
Before using this build strategy it is important to be aware of the security implications
of using it.

The build strategy works by using the docker build command to process the
instructions contained in the Dockerfile. Although the build process is initiated
from a container, it is necessary for it to run as the root user. This is so that it has the
appropriate privileges to interact with the Docker daemon. The build of the image by
the Docker daemon also runs as root in order to perform actions such as installing
the system packages required by the image.

Because of the risks that exist when running as root, even inside a container, the abil‐
ity to run any container as root may be disabled in an OpenShift cluster. As a conse‐
quence, the ability to use this build strategy may not be present in the OpenShift
cluster you are using.

Creating the Build
For this build you will use the same source code repository as was used for the Source
build strategy, but direct oc new-app to run the build with the Docker build strategy.
This is done by passing the --strategy=docker option, along with the URL for the
repository:

$ oc new-build --name blog --strategy=docker \
 https://github.com/openshift-katacoda/blog-django-py
 --> Found Docker image 956e2bd (5 days old) from Docker Hub
 for "centos/python-35-centos7:latest"

 ...

 * An image stream will be created as "python-35-centos7:latest"
 that will track the source image
 * A Docker build using source code from
 https://github.com/openshift-katacoda/blog-django-py will be
 created
 * The resulting image will be pushed to image stream "blog:latest"
 * Every time "python-35-centos7:latest" changes a new build will
 be triggered

52 | Chapter 7: Building an Image from a Dockerfile

 --> Creating resources with label build=blog ...
 imagestream "python-35-centos7" created
 imagestream "blog" created
 buildconfig "blog" created
 --> Success
 Build configuration "blog" created and build triggered.
 Run 'oc logs -f bc/blog' to stream the build progress.

The build, when run, will use the Dockerfile in the repository as the source of
instructions for how to build the image.

Deploying the Image
With the build complete, the resulting image is stored in your project as the image
stream called blog. To deploy the image as an application use the oc new-app com‐
mand:

$ oc new-app blog
--> Found image 1f6debb (5 minutes old) in image stream "myproject/blog"
 under tag "latest" for "blog"

 ...

 * This image will be deployed in deployment config "blog"
 * Port 8080/tcp will be load balanced by service "blog"
 * Other containers can access this service through the
 hostname "blog"

--> Creating resources ...
 deploymentconfig "blog" created
 service "blog" created
--> Success
 Run 'oc status' to view your app.

In this case, because you went on to deploy the image as an application, you could
instead have used the oc new-app command and gone directly from source files to
the deployed application:

$ oc new-app --name blog --strategy=docker \
 https://github.com/openshift-katacoda/blog-django-py

You would use oc new-build rather than oc new-app when creating an S2I builder
image from a Dockerfile. In that case the final image wouldn’t be able to be deployed
as an application.

Build and Runtime Configuration
Similarly to when deploying an application from a container image, environment
variables to be set when the container is run can be specified using the --env option

Deploying the Image | 53

to oc new-app. This can be done when deploying directly from source code, or when
using oc new-app to deploy the image created by a distinct build step.

If it is necessary to set environment variables for the build step and you are deploying
directly from source code, use the --build-env option to oc new-app:

$ oc new-app --name blog --strategy=docker \
 --build-env UPGRADE_PIP_TO_LATEST=1 \
 https://github.com/openshift-katacoda/blog-django-py

If using the two-step approach of invoking oc new-build and oc new-app, the envi‐
ronment variables specific to the build step should be passed to oc new-build using
the --env option:

$ oc new-build --name blog --strategy=docker \
 --env UPGRADE_PIP_TO_LATEST=1 \
 https://github.com/openshift-katacoda/blog-django-py

If the environment variables need to be added after the build configuration has been
created, the oc set env command can be used:

$ oc set env bc/blog UPGRADE_PIP_TO_LATEST=1
buildconfig "blog" updated

Build-time environment variables might be required to customize the build process
when the image is being built. You can see the environment variables that are being
set for the build by using oc set env with the --list option:

$ oc set env bc/blog --list
buildconfigs blog
UPGRADE_PIP_TO_LATEST=1

Although the environment variables are specified in the build configuration, they will
also be set in the image created and visible to the application when it is deployed.

When building an image from a Dockerfile, it is also possible to supply build argu‐
ments. These behave like environment variables, except that they will not be set in the
container when the image is run, only during the build.

A build argument can be set using the --build-arg option when using oc new-
build:

$ oc new-build --name blog --strategy=docker \
 --build-arg HTTP_PROXY=https://proxy.example.com \
 https://github.com/openshift-katacoda/blog-django-py

To use build arguments, an appropriate ARG instruction must have been defined in the
Dockerfile; otherwise, they will be ignored.

Although an environment variable corresponding to the build argument will not be
set in the container when the image is run, if you are able to access the image directly

54 | Chapter 7: Building an Image from a Dockerfile

from the image registry, you will be able to see the value associated with a build argu‐
ment using docker history or docker inspect.

Using an Inline Dockerfile
Images can be customized by creating a new image that derives from an existing
image. Additional layers are then added, which include further software packages or
configuration. This can be done using the Docker build strategy, with the Dockerfile
and associated files being hosted in a source code repository. A binary input build
could also be used, enabling the files to be held in a local filesystem and injected into
the build process.

For simple image customizations where all the steps can be described in the Docker
file, with no additional files needing to be supplied along with the Dockerfile, the
Dockerfile can be defined as part of the build configuration. This approach could be
used when you need to install additional operating system packages or utilities
required by an application built using an S2I builder.

To illustrate this case, create a Dockerfile with the additional steps:

FROM openshift/python:3.5
USER root
RUN yum install -y wget
USER 1001

You can then use a Docker build to create a new image using the Dockerfile as input
by running oc new-build with the --dockerfile option:

$ cat Dockerfile | oc new-build --name python-plus --dockerfile=-
--> Found image a080357 (2 days old) in image stream "openshift/python" under
 tag "3.5" for "openshift/python:3.5"

 ...

 * A Docker build using a predefined Dockerfile will be created
 * The resulting image will be pushed to image stream "python-plus:latest"
 * Use 'start-build' to trigger a new build

--> Creating resources with label build=python-plus ...
 imagestream "python-plus" created
 buildconfig "python-plus" created
--> Success
 Build configuration "python-plus" created and build triggered.
 Run 'oc logs -f bc/python-plus' to stream the build progress.

The argument of - to the --dockerfile option says to read the Dockerfile contents
from standard input over a pipe—otherwise, the contents of the Dockerfile would
need to be supplied as the value for the option. It is not possible to provide a path
specifying the location of the Dockerfile in the filesystem.

Using an Inline Dockerfile | 55

When the build has completed, the customized image can be used in place of the
original S2I builder image by using the name of the imagestream created in place of
the original builder name.

Summary
As an extension to the traditional PaaS functionality of being able to build from
application source code with the platform worrying about the details, OpenShift also
supports building a container image from instructions in a Dockerfile.

This provides the most flexibility for controlling how the container image is built and
run, and offers the ability to install additional operating system packages into the
container image.

Because this build strategy requires the build to run as the Unix root user, however, it
may not be enabled for the OpenShift cluster you are using.

56 | Chapter 7: Building an Image from a Dockerfile

CHAPTER 8

Understanding Source-to-Image Builders

The Docker build strategy provides the most control over how to build an image.
Because of the potential security risks with allowing Docker builds within a shared
OpenShift cluster, the ability to use the Docker build strategy would usually be
restricted to trusted developers.

The most common method for building applications is therefore using the S2I build‐
ers. To get the most out of the S2I builders, it is helpful to understand how they work.

In this chapter you will delve into how S2I builders work and how to implement a
simple S2I builder image. You will also be shown how to add annotations to the
image for your custom S2I builder so that it can be selected and used from the Open‐
Shift web console.

The Source-to-Image Project
The process of building an image from application source code in OpenShift makes
use of a toolkit and workflow originating from the open source Source-to-Image
project.

The S2I toolkit produces ready-to-run images by injecting source files into a running
instance of a builder base image, with scripts in the builder image turning that source
code into a runnable application. From the container the build process was run in, a
runnable application image is then created.

The command-line tool that drives the S2I build process is called s2i. When you
deploy an application from source code in OpenShift using S2I, all the steps involved
in running the s2i command-line tool are done for you. It is possible, however, to use
this tool on your own system to create container images, independent of OpenShift.

57

https://github.com/openshift/source-to-image

To illustrate how the S2I build process works, we will use the s2i command-line tool
directly.

Building the Application Image
To build an application image using the s2i command-line tool, you need two inputs.
The first is your application source code. The second is an S2I builder image that sup‐
ports the programming language and server stack your application is implemented
in.

S2I builder images are normal container images, with many available on the Docker
Hub image registry. Examples of images for commonly used programming languages
or application server stacks are:

Node.js 6 centos/nodejs-6-centos7

Ruby 2.3 centos/ruby-23-centos7

Perl 5.24 centos/perl-524-centos7

PHP 7.0 centos/php-70-centos7

Python 3.5 centos/python-35-centos7

Wildfly 10.1 openshift/wildfly-101-centos7

Application source code can be hosted on a Git repository hosting service, or you can
keep it in a local filesystem directory.

To create a runnable container image using the s2i command-line tool, you will also
need to have a local container service running.

To build the container image, run s2i build, supplying it the location of your appli‐
cation source code, the name of the S2I builder image, and the name to give to the
application image created:

$ s2i build https://github.com/openshift-katacoda/blog-django-py \
 centos/python-35-centos7 blog

Details of the image produced can be viewed by running docker images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
blog latest ec50f4d34a83 About a minute ago 675MB

Using s2i, you can create an application image without needing to know how to cre‐
ate a Dockerfile, and without needing to know how to run docker build.

To run the application image, use docker run:

$ docker run --rm -p 8080:8080 blog

58 | Chapter 8: Understanding Source-to-Image Builders

Although the process of generating the application image may appear to be magic, the
resulting image isn’t special. You can build images outside OpenShift using s2i and
run them using a local container service, share them with others by pushing them to
an image registry, or deploy them to OpenShift.

Using the S2I support in OpenShift does have the benefits, though, of tying into the
automated build and deployment mechanism. Chapter 11 will look more into auto‐
mating builds and deployments using OpenShift.

Assembling the Source Code
When the s2i build command is run, a number of steps are performed to create the
application image.

The first step is to package up the application source code into an archive.

In our case, the s2i build command was provided with a URL to application source
code on a Git repository hosting service. The s2i command will download the latest
version of the source code. An alternative version could have been nominated by sup‐
plying a tag name, commit reference, or branch name, and instead of a remote Git
repository, a path to a local directory containing the application source code could
have been provided.

The second step is that the s2i command will use the docker run command to start
a container from the S2I builder image. At the same time, it will inject the archive
containing the application source code into the container.

The command run in the container by the s2i command will unpack the archive
containing the application source code. An assemble script provided by the S2I
builder image will then be run.

It is this assemble script that takes the application source code and moves it into the
correct location, or compiles the source code to produce a runnable application. As
part of this build process, the assemble script might also download any language-
specific packages that the application requires to run, and install them.

Once the assemble script has completed, the third and final step of converting the
snapshot of the stopped container into a runnable image is performed. When this is
done, the s2i command will also set the program to be executed when the image is
run to be a run script provided by the S2I builder image.

It is this run script that is executed when the docker run command is used to run the
image. The run script will perform any steps required to start up the application pre‐
pared by the assemble script.

Assembling the Source Code | 59

Creating an S2I Builder Image
As an S2I builder is a container image, you can create your own custom builder
images. This is done by building an image from a Dockerfile. The OpenShift project
provides a convenient base image you can use as a starting point for a custom S2I
builder.

To illustrate a simple S2I builder, you can create a builder for running a web server
for hosting static files. The source files provided to the builder when the S2I process is
run will be what the web server hosts and makes available.

The Dockerfile for this builder would contain:

FROM openshift/base-centos7

LABEL io.k8s.description="Simple HTTP Server" \
 io.k8s.display-name="Simple HTTP Server" \
 io.openshift.s2i.scripts-url="image:///usr/libexec/s2i" \
 io.openshift.expose-services="8080:http" \
 io.openshift.tags="builder,http"

COPY assemble /usr/libexec/s2i/
COPY run /usr/libexec/s2i/
COPY usage /usr/libexec/s2i/

EXPOSE 8080

USER 1001

CMD ["/usr/libexec/s2i/usage"]

The Dockerfile needs to define the io.openshift.s2i.scripts-url label as the
location of the assemble and run scripts in the image, with the scripts being copied
into that location.

The io.openshift.expose-services label, along with the EXPOSE statement, tells
OpenShift which ports the application produced by the builder will use.

The Dockerfile can include any RUN statements required to install additional pack‐
ages when the builder image is built.

The USER statement must be set at the end of the Dockerfile to the user ID 1001,
which will be the user the build process runs as.

The usage script included in the image is configured as the default command exe‐
cuted when the image is run. It has the following contents:

#!/bin/bash

cat <<EOF
This is a S2I builder image for running a simple HTTP server. For

60 | Chapter 8: Understanding Source-to-Image Builders

https://github.com/sclorg/s2i-base-container

instructions on using the S2I builder image see:

* https://github.com/openshift-katacoda/simple-http-server
EOF

The usage script is provided as a way for users to find information on how to use your
builder image.

The main work in preparing the image is done by the assemble script, which looks
like this:

#!/bin/bash

echo " -----> Move HTTP server files into place."

mv /tmp/src/* /opt/app-root/src/

The assemble script should take any source files placed in the /tmp/src directory by
the s2i build process and copy them into the required location, or compile them
into an executable application.

The assemble script could also download and install additional language-specific
packages required by the application, which are listed in a package dependencies file
included with the source files.

For the openshift/base-centos7 image used, the home directory when running the
build and the application is set as /opt/app-root/src. An application can write to any
location under /opt/app-root.

Although not required in this example, if the application, when run, needs to write to
the filesystem, you need to ensure you fix up permissions on the directory tree
at /opt/app-root after any custom build steps have been run. The base builder image
provides a fix-permissions script for this. When run, the fix-permissions script will
ensure that all directories and files in the directory passed as an argument are writa‐
ble by any user in the same group. If this step is required, you would add it to the end
of the assemble script:

fix-permissions /opt/app-root

The run script is executed when the application image produced by the S2I build pro‐
cess is run. It looks like this:

#!/bin/bash

echo " -----> Run HTTP server."

exec python -m SimpleHTTPServer 8080

The application you run from this script should be run in the foreground, and the
exec statement should be used when executing it. This ensures that it inherits process

Creating an S2I Builder Image | 61

ID 1 of the container, allowing the application to receive any signals sent to the con‐
tainer to trigger a shutdown.

With both the assemble and run scripts, if any step in the scripts fails, the script as a
whole should fail immediately. The easiest way of ensuring this, without needing to
check the result of every command run, is to add this line at the start of each script:

set -eo pipefail

This command instructs the bash interpreter to exit immediately when any command
run returns a result indicating a failure.

Building the S2I Builder Image
If using the s2i command-line tool outside OpenShift, to build the S2I builder image
from these files, you would run:

$ docker build -t simple-http-server .

This would produce an image called simple-http-server. To use this to build an
application image, you would run:

$ s2i build \
 https://github.com/example/static-web-site \
 simple-http-server \
 static-web-site

The run script in this builder starts the simple HTTP server to host the files copied
into the image. To run the application image, use this command:

$ docker run --rm -p 8080:8080 static-web-site

Using the S2I Builder with OpenShift
To use your S2I builder image in OpenShift, you have three options.

The first is to build it outside of OpenShift, as shown previously, and upload it to an
external image registry such as Docker Hub. This example has been placed on Docker
Hub as openshiftkatacoda/simple-http-server. You would import it into OpenShift
using:

$ oc import-image openshiftkatacoda/simple-http-server --confirm

This will create an image stream called simple-http-server, and you can use it by
running:

$ oc new-app simple-http-server~https://github.com/example/static-web-site

The second option is, rather than uploading the image to an external image registry,
to push it to the internal image registry of OpenShift. How to do this was described in
Chapter 5.

62 | Chapter 8: Understanding Source-to-Image Builders

The final option is to build the S2I builder image in OpenShift. The source files for
this example can be found on GitHub.

To build it in OpenShift you would run:

$ oc new-build --name simple-http-server --strategy=docker \
 --code https://github.com/openshift-katacoda/simple-http-server

$ oc start-build simple-http-server

This would again create an image stream called simple-http-server, which would
be used as shown previously.

Adding an S2I Builder to the Catalog
In order to have your S2I builder be selectable in the catalog of the web console, an
additional step of adding an annotation to the image stream definition for the S2I
builder image is required. This can be done by editing the image stream using the
command:

$ oc edit is/simple-http-server

The tags annotation with value builder should be added, yielding:

{
 "kind": "ImageStream",
 "apiVersion": "v1",
 "metadata": {
 "name": "simple-http-server"
 },
 "spec": {
 "tags": [
 {
 "name": "latest",
 "annotations": {
 "tags": "builder"
 },
 "from": {
 "kind": "DockerImage",
 "name": "openshiftkatacoda/simple-http-server:latest"
 }
 }
]
 }
}

At the time of writing this book, the tags annotation has to be added for each image
version tag. A proposal exists to allow it to be defined as an annotation within the
metadata of the image stream, and by the time you read this book, that may be sup‐
ported.

Adding an S2I Builder to the Catalog | 63

https://github.com/openshift-katacoda/simple-http-server

In the catalog of the web console, you can now search for simple-http-server and
create your application using the builder from your browser.

Additional annotations can be added to the image stream definition to provide a dis‐
play name, description, and category. For addition information, see the OpenShift
documentation on writing image streams for S2I builders.

If you want to make it simple for others to use your S2I builder, and the image is hos‐
ted on Docker Hub, you can host the image stream definition using any web server. A
user can then load the image stream definition using oc create, in place of using oc
import-image. For this example builder, you could instead run:

$ oc create -f https://raw.githubusercontent.com\
/openshift-katacoda/simple-http-server/master/imagestream.json

Summary
The Source-to-Image tool implements a mechanism to take application source code
and build it into a container image. The tool works by starting a container using an
S2I builder image, injecting the application source code into the container, and run‐
ning an assemble script to set up the contents of the image.

The S2I tool is a standalone application you can use on your own local system, inde‐
pendent of any platform for deploying applications to containers. To make it easier to
use, OpenShift provides integrated support for the tool, which forms the core of the
PaaS functionality of OpenShift.

OpenShift provides a range of S2I builders you can use, or you can easily create your
own custom S2I builders and integrate them into OpenShift so you can choose them
from the OpenShift web console.

64 | Chapter 8: Understanding Source-to-Image Builders

http://bit.ly/2EG4w47

CHAPTER 9

Customizing Source-to-Image Builds

Rather than creating an S2I builder from scratch, it is more typical that you will
require only minor customizations to the behavior of the S2I builder image for a spe‐
cific application.

A well-designed S2I builder image should provide the ability to customize the behav‐
ior for common use cases using environment variables set during the build or at the
time of deployment.

When the S2I builder doesn’t do this, or your use case requires additional steps to be
run, you will need to override the behavior of the default assemble and run scripts.

In this chapter you will learn about the different ways that the S2I assemble and run
scripts can be overridden or extended. This can be done by including different ver‐
sions of the scripts with your application source code; by hosting them on a separate
web server and referencing them from the build configuration; or, if you only wish to
override the run script, by mounting it into a container from a config map or persis‐
tent volume.

You will also learn how you can create a modified S2I builder by using the Source
build strategy to build the image, rather than the Docker build strategy.

Using Environment Variables
When using an existing S2I builder, the hope is that the authors of that builder have
designed it with flexibility in mind—that is, that they have allowed the behavior of the
S2I builder to be customized through configuration, both when the builder is being
run to create an application image and when that application image is being run.

65

Configuration for a builder can be supplied using environment variables. You saw in
Chapter 6 how environment variables can be set for the deployment of an application,
or when the application is being built using an S2I builder.

In the prior examples, the environment variables were set as part of the build and
deployment configuration within OpenShift. One problem with defining environ‐
ment variables as part of the configuration in OpenShift is that it is separate to the
source code for the application and not under version control.

Where it makes more sense to include these environment variables with the source
code, when using an S2I builder, they can be added as part of the source code in the
file .s2i/environment.

Instead of using the --build-env option to oc new-app or oc new-build, you would
create the .s2i/environment file and place entries in it of the form key=value. For
example:

UPGRADE_PIP_TO_LATEST=1

Only static values can be specified in this file. It is not possible to add values for envi‐
ronment variables that are dynamically calculated from other values or by running a
command.

Environment variables set in this file will become part of the application image and
will be present for the building of the application image as well as when it is deployed.

Overriding the Builder Scripts
When the S2I builder is run to build an application image, the assemble script con‐
tained in the image is run to take source files and generate the runnable application.
When the application image is later run, the run script contained in the image is used
to run the application.

Both the assemble and run scripts can be overridden by supplying your own scripts in
the .s2i/bin directory of the application source code. If present, these will be copied
into the container during the S2I build process, with the assemble script being run in
place of the default script. Similarly, if a replacement run script is supplied, it will be
used when the application image is run.

Although these scripts could be self-contained and completely replace the original
scripts, the more typical use case is to perform some action and then execute the orig‐
inal script. In the case of the assemble script, you might also perform additional
actions after the original assemble script is executed.

A custom assemble script added as .s2i/bin/assemble would therefore take the form:

#!/bin/bash

66 | Chapter 9: Customizing Source-to-Image Builds

set -eo pipefail

Set environment variables.

...

Execute original assemble script.

/usr/libexec/s2i/assemble

Run additional build steps.

...

Ensure the script is executable. Being a shell script, you can include any shell code in
it, including code that dynamically sets environment variables.

Remember that it is the original assemble script that will copy source files into place,
install additional packages, or compile the source files into an application executable.
If you need to do more than set and export environment variables prior to the origi‐
nal assemble script being run, the source files copied in for the build will be in
the /tmp/src directory.

If you were overriding the run script by adding .s2i/bin/run, it would take the form:

#!/bin/bash

set -eo pipefail

Set environment variables.

...

Run additional deployment steps.

...

Execute original run script.

exec /usr/libexec/s2i/run

When running the original run script, you must use exec. This ensures that the origi‐
nal script gets to run as process ID 1 in the container and is able to receive signals
sent to the container to shut down the application.

Because the original run script replaces the execution of this script, you cannot run
any post-deployment steps. If you need to run actions after the rollout of a new ver‐
sion of an application you should look at using lifecycle hooks. Lifecycle hooks will be
covered in more detail in Chapter 17.

Overriding the Builder Scripts | 67

Read-Only Code Repositories
Adding assemble and run scripts to the application source files can only be done if
you own the original source code, or if the application source code is using a hosted
Git repository and you have forked the original code repository.

If you can’t add to the original source files, or don’t want to, you can instead host the
assemble and run scripts in a separate code repository and set up the build configura‐
tion to download them from that location. To do this, you need to edit the build con‐
figuration and set the spec.strategy.sourceStrategy.scripts property to the URL
of a directory on a web server from which the assemble and run scripts can be down‐
loaded. This cannot be done at the time of creating an application using oc new-app
or from the web console unless you are supplying the raw resource object definitions
for the build and deployment.

To set this property for a build configuration that has already been created, you can
use the web console or oc edit, and change the YAML/JSON definition of the build
configuration directly.

You can also edit it from the command line by using oc patch:

$ oc patch bc/blog --type=json --patch \
 '[{"op":"add",
 "path":"/spec/strategy/sourceStrategy/scripts",
 "value":"https://raw.githubusercontent.com/example/test/master"}]'

If this method is used and the application source code also provided assemble and run
scripts in the .s2i/bin directory, the files in the application source code will be ignored
and will not be copied into the image. This means that the versions of the scripts
specified from the build configuration using the URL cannot call the existing assem‐
ble and run scripts present in the application source code. These scripts can, however,
still execute the original assemble and run scripts provided by the S2I builder image.

Overriding the Runtime Image
The methods described previously override the assemble and run scripts at the time
that the application image is being built. If you have an existing image and need to
override the run script, but do not want to rebuild the image, it is possible to override
the command used when the container is started. This can be done by editing the
deployment configuration for the application deployed from the image.

In this situation, the replacement run script will need to be stored in a persistent vol‐
ume, provided using a config map item mounted as a file into the container, or placed
in a temporary volume using an init container.

If using a config map, first create it:

68 | Chapter 9: Customizing Source-to-Image Builds

$ oc create configmap blog-run-script --from-file=run

Next, mount the config map into the container:

$ oc set volume dc/blog --add --type=configmap \
 --configmap-name=blog-run-script \
 --mount-path=/opt/app-root/scripts

Then update the deployment configuration to execute this script when starting the
container:

$ oc patch dc/blog --type=json --patch \
 '[{"op":"add",
 "path":"/spec/template/spec/containers/0/command",
 "value":["bash","/opt/app-root/scripts/run"]}]'

Because you are using a config map, the run script will not be marked as executable.
It is therefore necessary to use bash to execute the run script.

If using a mounted persistent volume, copy the run script into the persistent volume
using oc rsync, or create an interactive terminal session in the container using the
web console or oc rsh and edit the run script in place. When storing the run script in
a persistent volume you can mark it as executable and directly execute it as the com‐
mand in the deployment configuration.

To use an init container, you would mount a volume of type emptyDir within the init
container and place the run script in it. The main application container would mount
the same volume and run the script from it. You can find additional information on
using volumes in Chapter 14 and init containers in Chapter 17.

Updating the Image Metadata
In the cases described here where the assemble and run scripts were overridden by
new versions that were either placed in the .s2i/bin directory of the application source
code or supplied by specifying a web server from which to download the scripts,
those new versions only affected the specific image being created. If you were to take
the image created from the S2I build process and attempt to use it as an S2I builder
image, the latter build would revert to using the original scripts provided in the first
builder image.

In order to use an S2I build to create a new S2I builder image that behaves differently,
it is necessary to override the metadata of the image created. This can be done from
an assemble script by creating the file /tmp/.s2i/image_metadata.json and overriding
the labels for the image that specify where the assemble and run scripts are located.

Starting with the source files from the simple-http-server image created in Chap‐
ter 8 from a Dockerfile, add the file .s2i/bin/assemble, containing:

Updating the Image Metadata | 69

#!/bin/bash

set -eo pipefail

Move assemble/run scripts to new location.

mkdir /opt/app-root/s2i

mv /tmp/src/* /opt/app-root/s2i

Override image metadata for builder image.

mkdir -p /tmp/.s2i

cat > /tmp/.s2i/image_metadata.json << EOF
{
 "labels": [
 { "io.openshift.s2i.scripts-url": "image:///opt/app-root/s2i" }
]
}
EOF

This script moves the assemble, run, and usage scripts from before into the /opt/app-
root/s2i directory of the image. The /tmp/.s2i/image_metadata.json file is then created,
setting the io.openshift.s2i.scripts-url label to that directory.

When the S2I build process is run on these source files, the label information in the
image_metadata.json file will be used to update the label on the final image created.

In addition to the .s2i/bin/assemble script, we also add .s2i/bin/run. In this we add:

#!/bin/bash

exec /opt/app-root/s2i/run

This will be set as the CMD used when the image is run.

If the normal pattern for an S2I builder were followed, this would invoke /opt/app-
root/s2i/usage. In this case the run script is being invoked instead. This means the
resulting image can be run either as an S2I builder or as a standalone application
image, with the static files being mounted into the container from a persistent vol‐
ume.

To build the custom S2I image, you can run:

$ oc new-build --strategy=source --name simple-http-server \
 --code https://github.com/openshift-katacoda/simple-http-server \
 --image-stream python:2.7

Using an S2I builder and updating the image metadata in this way allows you to cre‐
ate new S2I builder images without needing to build the image from a Dockerfile.

70 | Chapter 9: Customizing Source-to-Image Builds

The only restriction is that the build runs as a non-root user, and as such it is not pos‐
sible to install additional operating system packages.

Summary
A Source-to-Image builder can typically be configured by passing environment vari‐
ables through to the build or subsequent deployment of the application image cre‐
ated.

If you need more control over the build, you can override the assemble and run
scripts by providing your own scripts in your application source code. The run script
can also be overridden for a specific deployment of an application created using S2I,
from a deployment configuration.

When an assemble script is provided with the application source code it is possible to
update the image metadata for the container image created, so that if the image cre‐
ated is used as an S2I builder it will use a different set of S2I scripts than the original.
Updating the image metadata in this way makes it possible to create your own custom
S2I builder images without needing to use the Docker build strategy, using the Source
build strategy instead.

Summary | 71

CHAPTER 10

Using Incremental and Chained Builds

When a Source-to-Image builder is used, the build phase is performed in a single step
by the assemble script. One issue with this is that each build is distinct. This means
that build artifacts generated by one build cannot be used for a subsequent build. As
everything needs to be re-created each time, this can slow down build times.

Part of the reason it can be slow is that for each build it would be necessary to pull
down third-party packages over the internet from a remote package repository. One
way of speeding this up is to deploy a local caching proxy server through which
downloads are routed. Downloading of the package will be sped up as the package
can be provided by the cache, avoiding the need to download it from a remote pack‐
age index each time.

Use of a local caching proxy server, though, will not eliminate the need to recompile a
package that is only provided as source code, unless the cache also supports upload‐
ing of a precompiled package to the cache that the build process can use.

An alternative to using a local caching proxy server is to save build artifacts from a
build in OpenShift and copy them across to subsequent builds so that they can be
reused. In this chapter, you will learn how you can use incremental and chained
builds to speed up build times by reusing the build artifacts of prior builds.

Faster Builds Using Caching
When you develop and deploy an application locally on your own computer system,
you achieve faster build times by reusing artifacts from previous builds of your appli‐
cation. You do not, for example, need to download and install all of the third-party
packages your application requires each time you deploy your application after a
change. For a compiled programming language, build tools are often smart enough to

73

know that certain code files do not need to be recompiled as the code change won’t
affect them.

When using an S2I builder, however, everything that may be required to build the
application has to be done every time. This is because each build is run in a new con‐
tainer, starting with only the builder base image.

In the case of needing to download third-party packages from the internet, some time
can be saved by using a local caching proxy server. Depending on the packaging sys‐
tem for the language being used, this could be a normal caching HTTP proxy, or it
might be a special-purpose proxy cache. For Java this might be Nexus or Artifactory,
and for Python it might be a Python Package Index (PyPi) mirror or proxy such as
devpi-server. Such local caching proxies may not eliminate, though, the need to
recompile code for packages each time.

OpenShift provides two mechanisms designed to try to reduce the time taken to run
S2I builds of an application. These can be used to implement custom caching solu‐
tions, enabling the carryover of build artifacts from one build to the next or provid‐
ing a local cache server for precompiled build artifacts. These two mechanisms are
incremental builds and chained builds.

Using Incremental Builds
In Chapter 8 you learned how the S2I build process works. The first step in the pro‐
cess was to start up a container using the builder image and inject the application
source code into the running container. The basis of incremental builds is that in
addition to your application source code, a set of build artifacts recovered from a pre‐
vious build is injected into the container at the same time.

For an S2I builder to support incremental builds, it must satisfy three requirements.

The first of these is that it must not discard build artifacts that could be carried over
to a subsequent build. This can be an issue, as one goal when building an application
image is to make the image as small as possible. Often intermediary build artifacts
that could be used to speed up a subsequent build will be discarded.

The second is that the S2I builder must provide a script to extract the build artifacts
from the image created by a previous build.

The third and final requirement is that the assemble script for an S2I builder must
know to look for and use any build artifacts injected into the container for the new
build.

74 | Chapter 10: Using Incremental and Chained Builds

Saving Artifacts from a Build
In order to extract build artifacts from the previous image produced by a build, the
S2I builder must provide a save-artifacts script. This should be placed in the same
directory as the assemble and run scripts. An example of a generic save-artifacts script
is as follows:

#!/bin/bash

mkdir -p /opt/app-root/cache
echo "Incremental Build" > /opt/app-root/cache/README.txt

tar -C /opt/app-root -cf - cache

The output from the save-artifacts script should be a tar archive stream of the build
artifacts. In this example the script expects that any build artifacts that are to be car‐
ried over to a subsequent build have been placed by the assemble script into the direc‐
tory /opt/app-root/cache.

If the /opt/app-root/cache directory doesn’t exist, the script first creates it. This is done
to ensure we are always returning something from the script. The README.txt file is
created as a marker file, as the S2I build process discards the output if all it contains is
empty directories with no files.

Restoring the Build Artifacts
When the S2I build process is run and incremental build support is enabled, a tempo‐
rary container will be started from the image produced by the previous build. The
command run in this temporary container will be the save-artifacts script. The output
will be captured and injected into the container for the new build, along with the
application source code. The build artifacts will be placed in the container in the
directory /tmp/artifacts.

To restore the build artifacts the assemble script will check for the existence of the
cache directory under /tmp/artifacts and move it to a location where the subsequent
build steps can use it:

if [-d /tmp/artifacts/cache]; then
 echo " -----> Restoring cache directory from incremental build."
 mv /tmp/artifacts/cache /opt/app-root/
fi

If the S2I builder normally discards build artifacts the save-artifacts script will have
nothing to save away. In this case, the assemble script can use the existence of
the /tmp/artifacts directory to enable the retention of build artifacts.

Saving Artifacts from a Build | 75

Enabling Incremental Builds
To enable incremental builds for an existing build configuration, you must set the
spec.strategy.sourceStrategy.incremental property of the build configuration
to true.

To enable incremental builds on the sample blog site application from Chapter 6, you
can use the oc patch command:

$ oc patch bc/blog --type=json --patch \
 '[{"op":"add",
 "path":"/spec/strategy/sourceStrategy/incremental",
 "value":true}]'

A new build should then be triggered:

$ oc start-build blog

In the case of the blog application, the Python S2I builder was used, which does not
support incremental builds. Incremental build support was instead added by adding a
suitable save-artifacts and assemble script wrapper to the application source code.

Because the Python S2I builder would normally not cache the third-party packages
when they are downloaded and built, it was necessary to enable this, too. This was
done by triggering the creation of the cache directory the first time the incremental
build was done. The result was that the first incremental build still took the same
amount of time, as there were no cached artifacts to use. It was only on subsequent
builds that the speedup was realized:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
blog-1 Source Git@832a277 Complete 5 minutes ago 38s
blog-2 Source Git@832a277 Complete 4 minutes ago 41s
blog-3 Source Git@832a277 Complete 3 minutes ago 23s
blog-4 Source Git@832a277 Complete 2 minutes ago 24s

The first build where the cached build artifacts were used was thus blog-3, after
incremental builds had been enabled prior to blog-2. When the build artifacts were
available, the build time was almost halved. How much improvement you will see will
depend on the S2I builder being used, the application, and what types of build arti‐
facts are being cached across builds.

Because incremental builds are dependent on the S2I builder assemble script includ‐
ing support, you will see no benefit if incremental builds are enabled when no sup‐
port has been added. If using one of the S2I builders included with OpenShift, or one
from a third party, ensure you check any documentation to see whether incremental
build support is included and whether you need to make changes to your application
code for it to work.

76 | Chapter 10: Using Incremental and Chained Builds

Using Chained Builds
Chained builds are similar to incremental builds in that files are copied across from
an existing image. There are, however, two key differences when using chained
builds.

The first is that instead of the files being copied from a previous build of the same
image, they are copied from a separate image. This can be an image imported into the
cluster or an image that has been built in the cluster. It is also possible to copy in files
from more than one image at the same time.

The second is that instead of the files being copied to a fixed location in the image
separate from the application source files, they will be merged with the application
source files at a location you choose.

Using chained builds it is possible to set up a separate build configuration to prebuild
artifacts into an image that is then used in multiple application images. Chained
builds also allow a special build-time image to be used to generate an executable
application, with the executable application then being copied into a smaller runtime
image without the build tools and compilers.

The blog application we have been using for examples is implemented in the Python
programming language. One mechanism used in Python to speed up build times is to
precompile Python packages into Python wheels. These are files that contain the
installed version of a Python package, including any compiled C extension modules.

Although Python wheels can be uploaded to PyPi, packages may not provide them
for your platform when C extension modules are used.

To download and precompile a set of packages into Python wheels, an S2I builder can
be used to create a Python wheelhouse.

A Python wheelhouse S2I builder that works for our blog application can be imported
by running:

$ oc import-image openshiftkatacoda/python-wheelhouse --confirm

This can then be used to prebuild the Python wheels into an image:

$ oc new-build --name blog-wheelhouse \
 --image-stream python-wheelhouse \
 --code https://github.com/openshift-katacoda/blog-django-py

In this case we used the same source code repository as where the blog application
source code resides. All that is being used from the repository is the list of packages
from the requirements.txt file. We could have used a separate source code repository
that built a larger set of packages and not just those required by the blog application.
This could then be used instead of a local proxy server or cache such as devpi-
server.

Using Chained Builds | 77

To create the chained build we need to use oc new-build to first create the build for
the application. The --source-image option specifies the name of the image contain‐
ing the prebuilt artifacts. The --source-image-path option indicates which directory
in the source image should be copied into the application image when it’s being built,
and at what relative location in the application source code:

$ oc new-build --name blog \
 --image-stream python:3.5 \
 --code https://github.com/openshift-katacoda/blog-django-py \
 --source-image blog-wheelhouse \
 --source-image-path /opt/app-root/wheelhouse/.:.s2i/wheelhouse

When the build has finished, then deploy the image:

$ oc new-app --image-stream blog
oc expose svc/blog

When using chained builds, the S2I builder used to build the application image (or a
custom assemble script in the application source code) needs to support the prebuilt
artifacts being copied in. For the blog application, the Python S2I builder doesn’t pro‐
vide any support for this, and the custom assemble script handled setting the configu‐
ration. Now, the Python wheels copied in from the wheelhouse image will be used,
instead of downloading and recompiling the Python packages.

The result for the blog application, when using a chained build rather than an incre‐
mental build, is an immediate speedup in build times:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
blog-1 Source Git@04599b1 Complete 3 minutes ago 24s
blog-2 Source Git@04599b1 Complete 2 minutes ago 22s

The wheelhouse image used by the blog application will need to be rebuilt only when
the list of Python packages needed changes or a newer version of a package is avail‐
able. If the wheelhouse image is updated, the image triggers defined in the build con‐
figuration will automatically result in the blog application being rebuilt.

Summary
As a Source-to-Image builder starts over each time, building an application image
may be slow. This can be due to the need to download third-party packages from an
external package repository or to compiling source code each time a build occurs,
even if the source code has not changed.

To speed up S2I builds, S2I builders can implement support for incremental or
chained builds. These allow precompiled artifacts from a prior build of the image, or
those from a completely separate build, to be used in a new build.

78 | Chapter 10: Using Incremental and Chained Builds

CHAPTER 11

Webhooks and Build Automation

The support in OpenShift for the Docker and Source build strategies simplifies the
build and deployment process, as OpenShift worries about the details of running the
steps for you.

When the source code is contained in a hosted Git repository, OpenShift can also
automatically trigger a rebuild and new deployment when the S2I builder image, or
the base image used for a Docker build, has been updated. This is because it can pull
down the last used source code from the Git repository whenever it needs to.

With what you have learned so far, any time you make changes to the source code
you will currently still need to manually trigger a new build with the latest source
code.

In order to completely automate your development workflow, in this chapter you will
learn how to link your Git repository to OpenShift using a webhook. This will allow
you to have a new build automatically started on code changes, each time you com‐
mit and push those changes to your Git repository.

Because you likely will want to use a private hosted Git repository, where access to
your source code is only possible by first supplying appropriate access credentials,
this chapter will also look at how to use OpenShift with a private hosted Git reposi‐
tory.

Using a Hosted Git Repository
You’ve seen how to set up the build and deployment of an application from source
code, using the web console or oc command-line tool. The build can make use of a
Source-to-Image builder, or the application can be built from a Dockerfile.

79

You also now how to manually trigger a new build of the application, from the
description of the build configuration in the web console or by running the oc
start-build command from the command line.

Except in the case of a binary input source build being used, the application source
code will be pulled down from a master copy or branch in a separate Git repository
hosting service. When the application source code can be pulled down in this way by
OpenShift, it means that it can be rebuilt at any time, without a user needing to do
anything. This allows us to start automating the end-to-end build and deployment
process.

Accessing a Private Git Repository
The examples so far have used application source code hosted in a public Git reposi‐
tory. For your own application, you may want to use a private Git repository.

When using a private Git repository, secure access is achieved using either an SSH or
HTTPS connection, and you need to provide access credentials.

Because the access credentials are the key to your Git repository and need to be
stored inside OpenShift, it is important to use credentials for a user account that has
limited rights to work on the Git repository and that isn’t used for any other purpose.
For an SSH connection, you should not use your primary identity key.

To create a separate SSH key pair for use by OpenShift when accessing the repository,
run the ssh-keygen command. Save the result into a file named for the repository it
will be used with:

$ ssh-keygen -f ~/.ssh/github-blog-sshauth

When asked to supply a passphrase, leave it empty as OpenShift cannot use an SSH
key that requires a passphrase.

The ssh-keygen command will create two files. The private key file will use the name
supplied and the public key file will have the same basename but with a .pub exten‐
sion added to the end.

You should configure your Git repository hosting service to use the public key. If
using GitHub or GitLab, this is called a deploy key. If using Bitbucket it is called an
access key. Ensure when adding the key that it is granted read-only access to the
repository. This means OpenShift will be able to pull down the source code to do the
build, but cannot make changes to the hosted Git repository.

Having set up the Git repository hosting service with the public key, you are ready to
add the private key into OpenShift and configure OpenShift to use it for your applica‐
tion.

Create a secret in OpenShift to hold the private key:

80 | Chapter 11: Webhooks and Build Automation

$ oc secrets new-sshauth github-blog-sshauth \
 --ssh-privatekey=$HOME/.ssh/github-blog-sshauth

Grant the builder service account access to the secret, so it can be used when pulling
down the source code to build the application:

$ oc secrets link builder github-blog-sshauth

Finally, add an annotation to the secret to identify the source code repository it is for:

$ oc annotate secret/github-blog-sshauth \
 'build.openshift.io/source-secret-match-uri-1=\
 ssh://github.com/openshift-katacoda/blog-django-py.git'

To create the application, use the SSH URI instead of the HTTPS URI:

$ oc new-app --name blog --image-stream python \
 --code git@github.com:openshift-katacoda/blog-django-py.git

Because the annotation was added to the secret, the build will automatically associate
use of the repository with that secret and use the access credentials when pulling
down the application source code.

If the Git repository hosting service being used does not support setting up SSH
access keys, you can instead use basic authentication over HTTPS. This can use appli‐
cation access tokens if supported by the Git repository hosting service.

If you intend to use an HTTPS connection to interact with your Git repository, to
create a secret for your credentials, use the command:

$ oc secrets new-basicauth github-blog-basicauth --username <username> --prompt

Replace <username> with the username used when accessing the Git repository. The
--prompt option ensures that you are prompted to enter the user password or appli‐
cation access token.

Grant the builder service account access to the secret and annotate it with details of
the repository to be accessed.

Adding the annotation to the secret provides for automatic linking of access creden‐
tials to a build. If necessary, you can also edit an existing build configuration and set
the spec.source.sourceSecret.name property to the name of the secret holding the
access credentials.

If using OpenShift 3.7 or later, in place of adding the annotation to the secret, you can
instead supply the name of the source secret for the private Git repository to the oc
new-app or oc new-build command when run, by using the --source-secret
option.

Accessing a Private Git Repository | 81

Adding a Repository Webhook
A webhook (also known as a user-defined HTTP callback) is a way for an application
to notify another application of a change.

All major Git repository hosting services support generating a callback via a webhook
when a new set of source code changes is pushed to the hosted Git repository. Open‐
Shift accepts a callback via a webhook as a means to trigger a new build.

By configuring the Git repository hosting service with the details of the URL Open‐
Shift accepts for the callback, you can fully automate your development workflow,
such that committing and pushing the changes back to your hosted Git repository
will start the new build and deployment.

A webhook can only be used with an OpenShift cluster that is visi‐
ble to the Git repository hosting service. You cannot use a webhook
when using Minishift or oc cluster up, as these can be seen only
from the computer system they are running on.

To determine the URL for the webhook callback, run the oc describe command on
the build configuration:

$ oc describe bc/blog
Name: blog
Namespace: myproject
Created: 29 hours ago
Labels: app=blog
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 1

Strategy: Source
URL: https://github.com/openshift-katacoda/blog-django-py
From Image: ImageStreamTag openshift/python:3.5
Output to: ImageStreamTag blog:latest

Build Run Policy: Serial
Triggered by: Config, ImageChange
Webhook GitHub:
 URL: https://api.pro-us-east-1.openshift.com:443/oapi/v1/namespaces/
myproject/buildconfigs/blog/webhooks/3dhkEZGRlHD18XKbK_0e/github

Build Status Duration Creation Time
blog-1 complete 47s 2017-10-23 16:23:47 +1100 AEDT

Events: <none>

Different URLs are used for GitHub, GitLab, and Bitbucket. If you need to regenerate
the webhook URL with a new secret token, or a webhook URL does not appear for

82 | Chapter 11: Webhooks and Build Automation

the Git hosting service you are using, you can run the command oc set triggers
with the build configuration name as an argument, and pass the option --from-
github, --from-gitlab, or --from-bitbucket as appropriate. Rerun oc describe on
the build configuration to view the new webhook URL.

Use the URL when configuring the Git repository hosting service to trigger the web‐
hook when a push event occurs for your Git repository. When adding the webhook
callback to the Git repository hosting service, ensure that the content type for the
generated HTTP callback is application/json.

Customized Build Triggers
In addition to supporting special webhook callbacks for the major Git repository
hosting services, a generic webhook callback can also be used to trigger a new build.
This can be used by any service that is capable of making a web request. The callback
could, for example, be triggered by the successful completion of tests run on the
application source code by a third party.

In other words, rather than the Git repository hosting service triggering OpenShift to
run a build, it would notify a third-party testing service to run tests on the code first.
OpenShift would then only go on to build and deploy the code if the tests passed.

The URL for the generic webhook can be found by running oc describe on the
build configuration. If a generic webhook URL hasn’t been set up for the build config‐
uration, run oc set triggers on the build configuration with the --from-webhook
option.

When you’re using a generic webhook, passing additional build-time environment
variables as part of the webhook request body is also supported. This approach can be
used to customize how the application is built. For further details on passing environ‐
ment variables, see the OpenShift documentation on generic webhooks.

Chapter 6 looked at another method for integrating tests into the
workflow, by running tests within the application image after it has
been built. The build would be marked as successful only if those
tests had passed.

Summary
OpenShift builds on top of Kubernetes a build system that implements a PaaS layer.
This build system can be used to build applications from source code using a Source-
to-Image builder or a set of instructions provided in a Dockerfile.

Customized Build Triggers | 83

http://bit.ly/2EGPISN

When building from application source code, the files can be pulled from a hosted
Git repository. This may be a public or private Git repository. Input for builds can
also be uploaded for a single build from a local directory on your own system.

When using a hosted Git repository, you can configure a webhook callback to be fired
whenever code changes are pushed up to the Git repository. This can be used to trig‐
ger a new build and deployment of the application in OpenShift. If using a separate
test server, the webhook could instead trigger a test suite to be run first, with the suc‐
cess of the tests triggering the build and deployment using a separate webhook.

84 | Chapter 11: Webhooks and Build Automation

CHAPTER 12

Configuration and Secrets

Best practice when developing applications is to keep the source code in a version
control system such as Git. This ensures that you can roll back to a previous version
of the source code. Although default configuration settings are best also kept under
version control with your application source code, secret information such as data‐
base access credentials or SSH keys should be stored separately.

Such secret information, along with separate configuration settings that customize
the application defaults, is not part of the application source code but needs to be
available to the application when it is run within a container. To facilitate this, Open‐
Shift can store configuration and secrets as resources within a project, with them
being added to the container when the deployment occurs.

The simplest way of storing separate configuration is to add definitions of environ‐
ment variables to be set within a container as part of a build or deployment configu‐
ration. Examples of setting environment variables in this way were demonstrated in
previous chapters showing deployment of applications from a pre-existing image and
source code.

In this chapter you will learn more about using environment variables, as well as the
storage and use of secrets. This will include how using config maps enables configu‐
ration to be defined in one place and referenced in more than one build or deploy‐
ment configuration to avoid duplication. In addition to consuming configuration and
secrets as environment variables, how to map these into a container so they are avail‐
able as a file will also be covered.

Passing Environment Variables
Environment variables can be defined when building an image from source code or
in any situation where a container is being run.

85

The querying, addition, or removal of environment variables in a build or deploy‐
ment configuration is handled by the oc set env command.

To list the names and values of the environment variables run the oc set env com‐
mand, passing the name of the resource object as an argument and using the --list
option:

$ oc set env dc/blog --list
deploymentconfigs blog, container blog
DATABASE_URL=postgres://user145c30ca:EbAYDR1sJsvW@blog-db:5432/blog

To add a new environment variable pass the name of the environment variable and its
value, separated by =:

$ oc set env dc/blog BLOG_BANNER_COLOR=blue

This will overwrite any existing value if the environment variable has already been
set. You can use --overwrite=false to have the update fail if the environment vari‐
able exists but with a different value.

To set more than one environment variable at the same time, list them one after
another with a space between:

$ oc set env dc/blog BLOG_BANNER_COLOR=blue BLOG_SITE_NAME="My Blog"

If you have the environment variables to be set in a file or want to set them from your
local environment, you can pipe them into the oc set env command, passing a - to
indicate it should read them from the pipe:

$ env | grep '^AWS_' | oc set env dc/blog -

Any time you are setting the value of an environment variable, if you need to com‐
pose the value from other environment variables that are already being set, you can
use $(<VARNAME>) in the value. Ensure you surround the argument with single quotes
when setting it from the command line, to avoid the local shell trying to interpret the
value:

$ oc set env dc/blog \
 DATABASE_USERNAME=user145c30ca \
 DATABASE_PASSWORD=EbAYDR1sJsvW \
 DATABASE_URL='postgres://$(DATABASE_USERNAME):$(DATABASE_PASSWORD)@blog-db/blog'

If you need the value to include the literal string of form $(<VARNAME>), use
$$(<VARNAME>) to prevent it from being interpreted. The result will be passed
through as $(<VARNAME>).

To delete an environment variable, instead of using the name of the variable followed
by = and the value, use the name of the variable followed by -:

$ oc set env dc/blog BLOG_BANNER_COLOR-

86 | Chapter 12: Configuration and Secrets

When updating a deployment configuration, by default these commands will be
applied to all containers in the pod definition. If you only want the operation to apply
to a single container, you can name the container using the --container option.

Working with Configuration Files
Environment variables are the easiest mechanism to use for injecting configuration
information into a container. Configuration passed using environment variables is,
though, restricted to being in the form of simple key/value pairs. This method is not
well suited for passing more complex structured data to applications, such as JSON,
YAML, XML, or INI-formatted configuration files.

For working with more complex data, OpenShift provides the configmap resource
type. This also provides the ability to store keyed data, but the data values can be
more complex. In addition to being able to be passed into a container via environ‐
ment variables, configuration held in a config map can be made available in a con‐
tainer as a file, making this approach suitable for use with traditional configuration
files.

To create a config map you can use oc create configmap, or oc create with a
JSON/YAML resource definition for the config map.

If you only need to store simple key/value pairs, you can create the config map by
running oc create configmap and passing the --from-literal option along with
the names and values for the settings:

oc create configmap blog-settings \
 --from-literal BLOG_BANNER_COLOR=blue \
 --from-literal BLOG_SITE_NAME="My Blog"

You can see the definition of the config map by querying the resource created using
oc get -o json. The key parts of the definition needed to reproduce it are:

{
 "apiVersion": "v1",
 "kind": "ConfigMap",
 "metadata": {
 "name": "blog-settings"
 },
 "data": {
 "BLOG_BANNER_COLOR": "blue",
 "BLOG_SITE_NAME": "My Blog"
 }
}

If you were to take this definition and save it as blog-settings-configmap.json, you
could also load it by running:

$ oc create -f blog-settings-configmap.json

Working with Configuration Files | 87

When a config map is created, it is not associated with any application. To pass the
settings in this config map as environment variables in a deployment configuration,
you need to run the extra step of:

$ oc set env dc/blog --from configmap/blog-settings

The result of running oc set env on the deployment configuration with the --list
option will now be:

deploymentconfigs blog, container blog
BLOG_BANNER_COLOR from configmap blog-settings, key BLOG_BANNER_COLOR
BLOG_SITE_NAME from configmap blog-settings, key BLOG_SITE_NAME

The environment variables will be set as before, but rather than being stored in the
deployment configuration, they are referenced from the config map. When the con‐
tainer is started, the value for each environment variable will be copied from the con‐
fig map.

You can associate the same config map with any other applications that require it.
This means you can use the config map to keep configuration in one place, rather
than needing to duplicate it in each build or deployment configuration.

For more complicated data, you can create the config map using a file as input. Create
a file called blog.json containing:

{
 "BLOG_BANNER_COLOR": "blue",
 "BLOG_SITE_NAME": "My Blog"
}

To create the config map, instead of using --from-literal, use --from-file:

$ oc create configmap blog-settings-file --from-file blog.json

Running oc describe on the config map created, the result is:

$ oc describe configmap/blog-settings-file
Name: blog-settings-file
Namespace: myproject
Labels: <none>
Annotations: <none>

Data
====
blog.json:

{
 "BLOG_BANNER_COLOR": "blue",
 "BLOG_SITE_NAME": "My Blog"
}

88 | Chapter 12: Configuration and Secrets

The name of the file is used as the key. If it were necessary for the key to be different
from the name of the file used as input, you would use <key>=blog.json as the argu‐
ment to the --from-file option, replacing key with the name you want to use.

To mount a config map into a container as a set of files, run:

$ oc set volume dc/blog --add --configmap-name blog-settings-file \
 --mount-path=/opt/app-root/src/settings

This will result in files being created in the directory specified by the --mount-path
option, where the names of the files created correspond to the keys, and the contents
of the files are the values associated with those keys.

If the path specified by --mount-path is a directory that contains
existing files, those files will be hidden from view and no longer
accessible.

If you have more than one configuration file, you can add them all to one config map.
This can be done by passing more than one --from-file option to oc create con
figmap. Alternatively, if the files are all in the same directory by themselves, pass the
path of the directory to --from-file. Each file in the directory will be added under a
separate key.

To change a config map you can use oc edit on it, or you can save the current
resource definition to a file using oc get -o json or oc get -o yaml, edit the defi‐
nition in the file, and replace the original by running oc replace -f with the file as
the argument.

When you edit the definition of a config map, the changes will be automatically
reflected in the file mounted from the config map in any running containers. This
will not be instantaneous, with the changes taking up to a minute or more to appear
depending on how the OpenShift cluster is configured. If an application automati‐
cally detects changes to the configuration file and rereads it, the changes will be used
straightaway, without needing to redeploy the application.

If the config map is used to set environment variables, the application will not be
automatically redeployed. You will need to force a redeployment with the updated
values by running oc deploy --latest on the deployment configuration.

Handling of Secret Information
Secrets such as database credentials can be stored in a config map and passed to an
application using environment variables or in a configuration file. Because security of

Handling of Secret Information | 89

secrets is important, OpenShift provides an alternative resource type for handling
secret data called a secret.

A generic secret works the same as a config map, but OpenShift manages them inter‐
nally in a more secure manner. This includes data volumes for secrets being backed
by temporary file-storage facilities (tmpfs) and never coming to rest on a node.
Secrets can also only be accessed by service accounts that need them, or to which
access has been explicitly granted.

To create a generic secret you can use oc create secret generic, or oc create -f
with a JSON/YAML resource definition for the secret.

If you only need to store simple key/value pairs, you can create the secret by running
oc create secret generic and passing the --from-literal option along with the
names and values for the settings:

$ oc create secret generic blog-secrets \
 --from-literal DATABASE_USERNAME=user145c30ca \
 --from-literal DATABASE_PASSWORD=EbAYDR1sJsvW

You can see the definition of the secret by querying the resource created using oc get
-o json. The key parts of the definition needed to reproduce it are:

{
 "apiVersion": "v1",
 "kind": "Secret",
 "metadata": {
 "name": "blog-secrets"
 },
 "data": {
 "DATABASE_USERNAME": "dXNlcjE0NWMzMGNh",
 "DATABASE_PASSWORD": "RWJBWURSMXNKc3ZX"

 }
}

You will note that the value for each key under data has been obfuscated by applying
base64 encoding. If you are creating the resource definition yourself, you will need to
do the encoding yourself when adding the values. You can create the obfuscated val‐
ues using the Unix base64 command.

For convenience, especially when using a secret in a template definition, you can sup‐
ply the values as clear text, as long as you add them under the stringData field rather
than the data field:

{
 "apiVersion": "v1",
 "kind": "Secret",
 "metadata": {
 "name": "blog-secrets"
 },

90 | Chapter 12: Configuration and Secrets

 "stringData": {
 "DATABASE_USERNAME": "user145c30ca",
 "DATABASE_PASSWORD": "EbAYDR1sJsvW"
 }
}

Even when created in this way, when queried back the secret will always show the
data field with values obfuscated. The Unix base64 command can be used to deob‐
fuscate the values, and an option also exists to reveal the deobfuscated values if view‐
ing the secret through the web console.

To pass the settings in this secret as environment variables in a deployment configu‐
ration, you need to run the extra step of:

$ oc set env dc/blog --from secret/blog-secrets

The result of running oc set env on the deployment configuration with the --list
option will now be:

deploymentconfigs blog, container blog
DATABASE_USERNAME from secret blog-secrets, key DATABASE_USERNAME
DATABASE_PASSWORD from secret blog-secrets, key DATABASE_PASSWORD

To create the secret using a file, instead of using --from-literal use --from-file,
overriding the key used for the value as necessary:

$ oc create secret generic blog-webdav-users
--from-file .htdigest=webdav.htdigest

To mount the secret, use oc set volume, using the --secret-name option to identify
the secret to use:

$ oc set volume dc/blog --add --secret-name blog-webdav-users \
 --mount-path=/opt/app-root/secrets/webdav

To change a secret you can use oc edit on it, or you can save the current resource
definition to a file using oc get -o json or oc get -o yaml, edit the definition in
the file, and replace the original by running oc apply -f with the file as the argu‐
ment.

When you edit the definition of a secret, you will need to trigger a new deployment
for it to be used. The values of a secret when mounted as a file in the container will
not be updated automatically, as is the case when using a config map.

Deleting Configuration and Secrets
When you create config maps or secrets they are created independent from any exist‐
ing build or deployment configuration and are not associated with a specific applica‐
tion. If you want to associate them with a specific application in order to track them,

Deleting Configuration and Secrets | 91

you will need to add a label to them explicitly. This can be done using the oc label
command:

$ oc label secrets/blog-secrets app=blog

When you delete an application using oc delete all and a label selector, any config
maps or secrets to which that label has been applied will not be deleted. This is
because all does not include resource objects of type configmap and secret in the
selection.

To delete all resource objects for an application using a label selector, including
secret and configmap object types, use:

$ oc delete all,configmap,secret --selector app=blog

Summary
Configuration can be passed to a build or a running container using environment
variables. The environment variables are set in the build or deployment configura‐
tion.

In the case of a deployment, it is also possible to define a config map or secret. These
can hold key/value pairs that can be used to populate environment variables in a
deployment configuration or mounted as files into a running container.

A secret works the same way as a config map but provides extra guarantees as to how
it is managed by OpenShift. This includes controlling who can access a secret and
ensuring that a secret is never stored to disk on the node where applications are run.

92 | Chapter 12: Configuration and Secrets

CHAPTER 13

Services, Networking, and Routing

When you deploy an application, whether it is a web application or a database, you
need it to be accessible so other application components, or users, can access it. You
want to be able to control, though, who or what can access it.

In most cases, when you deploy an application in OpenShift, it will be accessible only
to other application components running in the same project. In order to make a web
application visible so that users outside the OpenShift cluster can access it, you need
to create a route. The creation of a route gives your web application a public URL by
which users can access it.

In this chapter you will learn about the relationship between containers and pods,
how your application can access other applications running in the same or a different
project, and how you can expose your application to external users.

Containers and Pods
Your application, when deployed, is run within a container. The container isolates
your application from other applications. From within the container, your application
can see only processes that are a part of the same deployed application. It cannot see
the processes of applications running in other containers.

When containers are run directly on a host, although applications are isolated from
each other, all the containers will normally share the same IP address and port name‐
space.

This means that if you want to run multiple instances of the same web application, all
wanting to use the same listener port for accepting web requests, they will conflict
with each other.

93

For this reason, when your application is run within OpenShift, the container is fur‐
ther encapsulated in what is called a pod.

A pod is a group of containers with shared storage and network resources. The con‐
tainers in a pod are always co-located and co-scheduled, and run in a shared context.

Containers within a pod share an IP address and port namespace, and can find each
other via localhost. They can also communicate with each other using local inter-
process communication (IPC) mechanisms like SystemV semaphores or POSIX
shared memory. Containers in different pods have distinct IP addresses and cannot
communicate using local IPC mechanisms.

Each pod having its own IP address and port namespace means that multiple instan‐
ces of an application, all wanting to use the same listener port for accepting web
requests, can be run on the same host, without your needing to override what port
each is using. A pod in that respect behaves as if it were its own host.

To see a list of all pods within a project, you can run the oc get pods command. If
you wish to see more information on a pod, including the IP address of the pod and
details of each container running in the pod, run oc describe pod, passing the name
of the pod as the argument.

It is not possible from outside a container to see what processes are running in it. In
order to see what is running in a container, you can use oc rsh to start an interactive
terminal session within the container. Provided the application image bundles the
required Unix commands, you can interact with the processes from the terminal ses‐
sion, in the same way as you would if they were running on your own host. You can
use Unix commands such as ps or top to list the processes that are running.

Services and Endpoints
Each pod has a distinct IP address. From any application running in the same project,
you can connect to another pod using its IP address on the port the application that is
running in that pod is using.

In order to be able to accept connections on a port from outside
the pod, an application should bind to the network address 0.0.0.0
and not 127.0.0.1 or localhost.

Using the direct IP address of a pod when connecting to it is not recommended. This
is because the IP addresses are not permanent and can change if a pod is killed and
replaced with an instance of the application running in a new pod.

94 | Chapter 13: Services, Networking, and Routing

If you have multiple instances of an application, they will each run in a separate pod.
These may be on the same node, or a different node in the OpenShift cluster. Each
instance will have a separate IP address.

In order to have a single permanent IP address that can be used to connect to any
instance of the application and to load-balance connections between the instances of
the application, OpenShift provides a service abstraction. If you use oc new-app or
the web console to deploy an application from a pre-existing image, or one built from
your source code, a service resource object will be created for you automatically.

To see a list of both the pods and services for an application, you can run oc get
pods,services and provide a label selector which matches that used by the applica‐
tion:

$ oc get pods,services --selector app=blog
NAME READY STATUS RESTARTS AGE
po/blog-2-sxbpd 1/1 Running 0 1m
po/blog-2-ww5ck 1/1 Running 0 1m

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/blog 172.30.229.46 <none> 8080/TCP 2m

The entry for the service will display the permanent IP address that can be used to
connect to the application. When there are multiple instances of the application, the
instance you connect to will be random.

To see a list of the pod IP addresses associated with a service, you can use the oc get
endpoints command:

$ oc get endpoints blog
NAME ENDPOINTS AGE
blog 172.17.0.10:8080,172.17.0.8:8080 2m

Although the IP address of the service remains the same for the life of the application,
you cannot determine what IP address will be used in advance.

If you were deploying an application directly to a host, to avoid users of the applica‐
tion having to know an IP address, you would register the IP address against a host‐
name within a DNS server. When you use OpenShift and a service is created, this will
be done for you, with the IP address being registered in a DNS server internal to the
OpenShift cluster and the hostname used matching the name of the service.

In this example, rather than a client application running in the same project needing
to use the IP address, it would be able to use the hostname blog to connect to the
application.

The registration of the IP address in the DNS server means that client applications
can be coded to use a fixed hostname, and the deployed backend application or data‐
base need only use the same name when it is created.

Services and Endpoints | 95

Alternatively, you could pass the hostname for the backend application or database to
the client application using an environment variable, or in a configuration file moun‐
ted into the container for the client application using a config map or secret.

Connecting Between Projects
When using the unqualified name of the service for an application as the hostname,
the name will only be able to be resolved from within the project where the applica‐
tion is deployed. If you need to be able to access a backend application or database
from a different project, you will need to use a qualified hostname that incorporates
the name of the project.

The format for the fully qualified hostname is:

<service-name>.<project-name>.svc.cluster.local

For example, if the service name is blog and it’s deployed in the project myproject,
the fully qualified hostname will be blog.myproject.svc.cluster.local.

As an installation of OpenShift is by default provisioned as multitenant, and applica‐
tions in one project cannot see any applications deployed in different projects, before
you can attempt to make connections directly from one project to another you will
need to enable access. To open up access between projects you can use the oc adm
pod-network command.

If you are using Minishift or oc cluster up, these do not come
with the multitenant network overlay enabled. This means you will
actually be able to make connections across projects without need‐
ing to do anything.

If you require this ability, check out the OpenShift documentation on managing net‐
works.

Creating External Routes
Neither the direct IP address of a pod or service nor the hostname for a service can be
used to access an application from outside the OpenShift cluster. In order for a web
application to be public and accessible from outside the OpenShift cluster, you will
need to create a route.

To expose a service for a web application so it can be accessed externally by a user,
you can run the oc expose service command, passing the name of the service as an
additional argument:

96 | Chapter 13: Services, Networking, and Routing

https://docs.openshift.org/latest/admin_guide/managing_networking.html
https://docs.openshift.org/latest/admin_guide/managing_networking.html

$ oc expose service/blog
route "blog" exposed

When a route is created, OpenShift will by default assign your application a unique
hostname by which it can be accessed from outside the OpenShift cluster. You can see
the details of the route created by running oc describe on the route:

$ oc describe route/blog
Name: blog
Namespace: myproject
Created: 5 minutes ago
Labels: app=blog
Annotations: openshift.io/host.generated=true
Requested Host: blog-myproject.b9ad.pro-us-east-1.openshiftapps.com
 exposed on router router 5 minutes ago
Path: <none>
TLS Termination: <none>
Insecure Policy: <none>
Endpoint Port: 8080-tcp

Service: blog
Weight: 100 (100%)
Endpoints: 172.17.0.4:8080

If you have your own custom hostname, you can use it rather than relying on the
assigned hostname. This can be done by passing the hostname to oc expose using
the --hostname option.

When using a custom hostname, you will need to have control over the DNS servers
for the domain name. You will then need to create a CNAME record in the DNS server
configuration for the hostname and point it at the hostname of the inbound router of
the OpenShift cluster.

If you can’t determine the hostname of the inbound router, you can usually use as the
target of the CNAME any hostname value that would fall within the wildcard subdo‐
main used by the OpenShift cluster for generated hostnames.

For the preceding example, where the assigned hostname was:

blog-myproject.b9ad.pro-us-east-1.openshiftapps.com

you could, as the target of the CNAME record, use:

myproject.b9ad.pro-us-east-1.openshiftapps.com

Where you have multiple instances of an application and a route is created, Open‐
Shift will automatically configure routing so that traffic is distributed between the
instances.

Sticky sessions will be used so that traffic from the same client will be preferentially
routed back to the same instance.

Creating External Routes | 97

Using Secure Connections
The route created using oc expose only supports requests using the HTTP protocol.
It cannot be used to expose a database service using a non-HTTP protocol.

In the case of HTTP traffic, if you want clients to use a secure connection, you will
need to create the route using oc create route instead of using oc expose.

Three types of secured routes are supported:

edge

The secure connection is terminated by the router, with the router proxying the
connection to the application using an insecure connection over the internal
cluster network. If not supplying your own hostname and SSL certificate, the SSL
certificate of the OpenShift cluster will be used. Although an insecure connection
is used internally, the traffic is not visible to other users of the cluster.

passthrough

The router will proxy the secure connection directly through to the application.
The application must be able to accept a secure connection and be configured
with the appropriate SSL certificate. Provided that the client supports Server
Name Identification (SNI) over a Transport Layer Security (TLS) connection, this
can be used to allow access to an application using non-HTTP protocols.

reencrypt

The secure connection is terminated by the router, with the router re-encrypting
traffic when proxying the connection to the application. If not supplying your
own hostname and SSL certificate, the SSL certificate of the OpenShift cluster
will be used for the initial inbound connection. For the connection from the
router to the application, the application must be able to accept a secure connec‐
tion and be configured with the appropriate SSL certificate used for the re-
encrypted connection.

To create a secure connection using edge termination, where the hostname assigned
by OpenShift is used, run the command:

$ oc create route edge blog-secure --service blog

If you have already created a route using oc expose for the insecure connection, the
name supplied for the route must be different. In this example the name of the route
was given as blog-secure.

Rather than creating separate routes for the insecure and secure connections, you can
create a single route that covers both cases by specifying how the insecure connection
should be handled.

98 | Chapter 13: Services, Networking, and Routing

If you want to allow a web application to accept HTTP requests via both insecure and
secure connections, run:

$ oc create route edge blog --service blog --insecure-policy Allow

If you want users who attempt to use an insecure connection to be redirected so that a
secure connection is used, run:

$ oc create route edge blog --service blog --insecure-policy Redirect

If using your own custom hostname, you can supply it using the --hostname option.
You will need to supply the SSL certificate files using the --key, --cert, and
--ca-cert options.

For a much deeper discussion of all the routing features OpenShift provides, includ‐
ing using passthrough and reencrypt secure routes, see the OpenShift architecture
documentation on routes.

Internal and External Ports
When hosting an application using OpenShift, the user ID that a container runs as
will be assigned based on which project it is running in. Containers are not allowed to
run as the root user by default. Because containers do not run as the root user, they
will not be able to use privileged port numbers below 1024. A web application would
not, for example, be able to use the standard port 80 used for HTTP.

Images designed not to require running as root will use a higher port number. For
web applications it is typical to use port 8080 instead of port 80. You can see what
ports a service is advertised as using by running oc get services. From within the
OpenShift cluster, when you access a pod directly via the IP address, or via the service
using the IP address or hostname, you would use this port number.

If you expose a service externally using a route, an external user would instead use
the standard port 80 for HTTP requests, or port 443 for HTTP requests over a secure
connection. The routing layer will always accept requests via the standard ports and,
when proxying the requests to the application, will map those to the internal port
numbers.

The port used when routing an HTTP request is dictated by what port the image
advertises itself as using and which was added to the service. If there is more than one
port advertised by the image, the first is used. If this is the wrong port, you can over‐
ride what port will be used by passing the --port option to oc expose service or oc
create route.

Internal and External Ports | 99

http://bit.ly/2H7OUTG

Exposing Non-HTTP Services
Exposing a service via a route is only useful if you are running an HTTP-based ser‐
vice or a service that can terminate a secure connection, with the client supporting
SNI over a secure connection using TLS.

If you wish to expose a different type of service, you have two choices.

First, you could dedicate a new public IP address for the service and configure net‐
work routing to pass connections to any port on that address through to the IP
address of the internal service. If you have multiple services using the same port, you
would need to dedicate a separate public IP address for each.

Alternatively, a dedicated port on the gateway host for the cluster could be assigned to
the service. Any connections on this port would be routed through to a port on the
internal service. Assigning a specific port to the service like this would result in the
port being reserved on each node in the cluster, even though it would only be in use
on one node at a time. If it were a standard port, you would not be able to use it for
any other services.

Both these methods require additional setup to be performed by the cluster admin.
For further information, check out the OpenShift documentation on getting traffic
into a cluster on non standard ports.

Local Port Forwarding
If the reason you want to expose a non-HTTP–based service is to allow temporary
access to permit debugging of an application, loading of data, or administration, a
service can be temporarily exposed to a local machine using port forwarding.

To use port forwarding, you need to identify a specific pod that you want to commu‐
nicate with. You cannot use port forwarding to expose an application via the service.
Use oc get pods with an appropriate label selector to identify the pod for the appli‐
cation:

$ oc get pods --selector name=postgresql
NAME READY STATUS RESTARTS AGE
postgresql-1-8cng2 1/1 Running 0 5m

You can then run oc port-forward with the name of the pod and the port on the
container you wish to connect to:

$ oc port-forward postgresql-1-8cng2 5432
Forwarding from 127.0.0.1:5432 -> 5432
Forwarding from [::1]:5432 -> 5432

The remote port will be exposed locally using the same port number. If the port num‐
ber is already in use on the local machine, you can specify a different local port to use:

100 | Chapter 13: Services, Networking, and Routing

http://bit.ly/2EJ2vDY

$ oc port-forward postgresql-1-8cng2 15432:5432
Forwarding from 127.0.0.1:15432 -> 5432
Forwarding from [::1]:15432 -> 5432

You can also have oc port-forward select a local port for you:

$ oc port-forward postgresql-1-8cng2 :5432
Forwarding from 127.0.0.1:48888 -> 5432
Forwarding from [::1]:48888 -> 5432

The oc port-forward command will run in the foreground until it is killed or the
connection is lost. While the connection is active you can run a client program
locally, connecting to the forwarded port on 127.0.0.1, with the connection being
proxied through to the remote application:

$ psql sampledb username --host=127.0.0.1 --port=48888
Handling connection for 5432
psql (9.2.18, server 9.5.4)
Type "help" for help.

sampledb=>

Summary
When an application is deployed to OpenShift, by default, it will be accessible only
within the OpenShift cluster. You can access the application from within the cluster
using an internal hostname derived from the service name of the application.

When there are multiple instances of the application, connecting to the application
will result in the connection being routed through to one of the pods that is running
the application.

If you need to make an HTTP web service available to users outside the OpenShift
cluster, you can expose it by creating a route. Creation of the route will result in
OpenShift automatically reconfiguring the routing layer for you. You can expose a
web application via the HTTP protocol or as HTTPS over a secure connection.
OpenShift can provide an external hostname for you, or you can use your own cus‐
tom hostname.

Services can also be exposed on a dedicated IP address or port, or temporarily to your
own local system using port forwarding.

Summary | 101

CHAPTER 14

Working with Persistent Storage

When an application is run inside a container, it has access to its own filesystem. This
contains a copy of the operating system files from the image, any application server
or language runtime files, as well as the source code or compiled binary for the appli‐
cation being run.

When the application is running, it can write files to any part of the filesystem it has
permission to write to, but when the container is stopped, any changes made will be
lost. This is because the local container filesystem is ephemeral.

In order to preserve data created by an application across restarts of the application,
or share dynamic data between instances of an application, persistent storage is
required. This may be persistent storage that is attached directly to a container the
application is running in, or persistent storage attached to a separate database run‐
ning in OpenShift that the application is using.

In this chapter, you will learn about persistent storage provided by OpenShift, how to
make a persistent volume claim, and how to mount the persistent volume into the
container for an application.

Types of Persistent Storage
When an OpenShift cluster is set up, it will be configured for persistent storage by the
cluster admin. The persistent volumes available may be pre-allocated from fixed stor‐
age, or a dynamic storage provisioner can be set up with persistent volumes being
allocated on demand from a persistent storage provider.

OpenShift supports a number of underlying storage technologies including NFS,
GlusterFS, Ceph RBD, OpenStack Cinder, AWS Elastic Block Storage, GCE Persistent
Storage, Azure Disk, Azure File, iSCSI, Fibre Channel, and VMware vSphere.

103

When volumes are declared, they can be associated with a storage class indicating the
type of technology used or other attributes, such as the performance of the disk.
When requesting storage you can, if necessary, indicate that a persistent volume with
a particular storage class is required.

The type of storage technology used will also dictate what access modes are sup‐
ported and how the persistent volumes can be used.

Access modes for persistent storage are:

ReadWriteOnce (RWO)
The volume can be mounted as read/write by a single node.

ReadOnlyMany (ROX)
The volume can be mounted as read-only by many nodes.

ReadWriteMany (RWX)
The volume can be mounted as read/write by many nodes.

For additional information see the OpenShift documentation for storage classes and
access modes.

If you are a cluster admin, you can view what persistent volumes have been pre-
defined, including the access modes and storage classes, by running the command oc
get pv. This information isn’t accessible to a non-admin user of the OpenShift clus‐
ter, so you will need to ask the cluster admin what is available or, if using a hosted
OpenShift service, check the documentation from the service provider.

It is possible that persistent storage available in an OpenShift cluster will not support
all access modes. If the only supported access mode is ReadWriteOnce, this will limit
how you can use persistent storage.

In the case of persistent storage with an access mode of ReadWriteOnce, you cannot
use it with a scaled application and you will not be able to use rolling deployments.
This is because a persistent volume supporting only that access mode can be mounted
against only one node in the OpenShift cluster at any one time. When you scale an
application, you are not guaranteed that all instances will run on the same node. In
the case of a rolling deployment, even if the replica count is set to one instance, a new
instance of the application will be started before the existing one is shut down. This
presents the same problem as when an application is scaled up.

The topic of deployment strategies and how to change the deployment strategy used
will be covered in Chapter 17.

104 | Chapter 14: Working with Persistent Storage

http://bit.ly/2EJKaXG
http://bit.ly/2HAUYVC

Claiming a Persistent Volume
When you need persistent storage for an application, you need to make a persistent
volume claim. When making the claim, you must specify the size of the persistent vol‐
ume you want. You can optionally also specify the access mode you need the persis‐
tent volume to support. If not supplied, the access mode will default to
ReadWriteOnce.

To make a persistent volume claim and mount the persistent volume against each
instance of your application, you can use the oc set volume --add command. You
must supply a directory path to use as the mount path for the persistent volume in
the container. You can optionally specify a name for the persistent volume claim and
a name to identify the volume mount in the deployment configuration. For example:

$ oc set volume dc/blog --add \
 --type=pvc --claim-size=1Gi --claim-mode=ReadWriteOnce \
 --claim-name blog-data --name data --mount-path /opt/app-root/src/media
persistentvolumeclaims/blog-data
deploymentconfig "blog" updated

If you need a persistent volume with a particular storage class, you can use the
--claim-class option.

When a persistent volume is added to a deployment configuration using
oc set volume, the application will be automatically redeployed. The one persistent
volume will then be mounted into each container, for all instances of your applica‐
tion. If a pod is restarted, the same persistent volume will be used by the replacement
pod. Any changes made in the persistent volume are therefore shared between all
instances and will be preserved across restarts of the application.

To list the persistent volumes that have been added against an application, run oc set
volume against the deployment configuration without any additional arguments:

$ oc set volume dc/blog
deploymentconfigs/blog
 pvc/blog-data (allocated 5GiB) as data
 mounted at /opt/app-root/src/media

This will show the actual size of the persistent volume being used. The size may be
larger than what was requested, because persistent volumes are defined with set sizes.
OpenShift will use the smallest volume size available that satisfies your request. The
limit on how much you can store in the persistent volume is dictated by the capacity
of the persistent volume and not the size of your request.

To see the current persistent volume claims in a project, run oc get pvc:

$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
blog-data Bound pv0088 5Gi RWO,ROX,RWX 3m

Claiming a Persistent Volume | 105

This will also show all the access modes the persistent volume you were allocated sup‐
ports.

Unmounting a Persistent Volume
To stop using a persistent volume with an application, you can use the oc set
volume --remove command. You must supply the name used to identify the volume
mount in the deployment configuration:

$ oc set volume dc/blog --remove --name data
deploymentconfig "blog" updated

This command will only remove the volume mount from the container of the appli‐
cation. It does not delete the persistent volume. Running oc get pvc, you should still
see the persistent volume claim listed.

Reusing a Persistent Volume Claim
If you have a persistent volume claim that you previously unmounted from an appli‐
cation, the oc set volume --add command can be used to add it back to the applica‐
tion:

$ oc set volume dc/blog --add \
 --claim-name blog-data --name data --mount-path /opt/app-root/src/media
deploymentconfig "blog" updated

As the persistent volume claim already exists, you do not need to specify a volume
type, the requested size of the volume, or the desired access mode. The name passed
to the --claim-name option must, though, match that of the existing persistent vol‐
ume claim.

Sharing Between Applications
If the access mode of a persistent volume is ReadWriteMany or ReadOnlyMany, you can
safely mount that persistent volume against multiple applications at the same time.
This will allow you to use a single persistent volume to share data between the appli‐
cations.

To share one persistent volume between multiple applications but have them be able
to see only a subset of what is stored in the persistent volume, you can pass the --
sub-path option to oc set volume --add, specifying a subdirectory of the persistent
volume which should be mounted into the container for the application.

106 | Chapter 14: Working with Persistent Storage

Sharing Between Containers
If multiple containers are being run in one pod, they can all share a persistent volume
if they need to see the same files. The same files will, though, also be shared with all
other pods running the same application.

If the requirement for sharing files is only between the containers in that pod, and
files do not need to be persistent across a restart of a pod, a special volume type called
emptyDir can be used.

This type of volume is allocated from local storage on each node and is dedicated to
the pod. When the pod is restarted, the storage is deleted.

In addition to being able to be used to hold normal files, you can also create special
file types such as Unix sockets in the volume, or you can mount the volume
at /dev/shm to enable shared memory access. This way, applications in the different
containers can communicate with each other.

If you’re using init containers, this type of volume can also be used to map files that
were generated by the init container into the application container. These could be
data files, configuration files, or a customized startup script for the application.

When using oc set volume to add a volume of this type, use the --type=emptyDir
option. By default the volume will be mounted against all containers in the pod. If
you need to specify a subset of the containers, use the --container option to name
them.

Deleting a Persistent Volume
When a persistent volume is unmounted from all applications, the persistent volume
claim, along with the persistent volume, will still exist. Any existing data you added to
the persistent volume will still be there.

If you no longer need the persistent volume, you can release it by running the oc
delete pvc command on the persistent volume claim:

$ oc delete pvc/blog-data
persistentvolumeclaim "blog-data" deleted

The reclaim policy of a persistent volume will usually be Recycle, meaning that as
soon as you delete the persistent volume, its contents will be deleted and the persis‐
tent volume will be returned to the pool of available persistent volumes.

To guard against accidental deletion of persistent volumes, a cluster admin can elect
to set the reclaim policy on a persistent volume to Retain. In this case if you do acci‐
dentally delete a persistent volume, it will not be recycled automatically. If you know
this reclaim policy is being used, you can contact your cluster admin to see if you can

Sharing Between Containers | 107

get the persistent volume claim reinstated with the same persistent volume. You will
need to know what the original volume name was for the persistent volume claim.
You can get this for a current persistent volume claim from the output of running oc
get pvc.

Copying Data to a Volume
If you have your application running and a persistent volume mounted, you can copy
a directory from your local system into the persistent volume using oc rsync.

First determine the name of the pod for your application that mounts the persistent
volume:

$ oc get pods --selector app=blog
NAME READY STATUS RESTARTS AGE
blog-1-5m3q6 1/1 Running 0 2m

You can then run oc rsync to copy the directory.

$ oc rsync /tmp/images blog-1-5m3q6:/opt/app-root/src/media --no-perms

The --no-perms option tells oc rsync not to attempt to preserve permissions on
directories and files. This is necessary, when copying files to the local container file‐
system, and the directory into which files are being copied is not owned by the user
ID the container is running as, but rather by the user that the S2I builder was run as.
Without this option, oc rsync would fail when it attempts to change the permissions
on the directory.

The oc rsync command can also be used to copy directories or files from a running
container back to the local system. Copying in either direction can be run as a one-off
event, or you can have oc rsync continually monitor for changes and copy files each
time they are changed.

Summary
OpenShift is able to support more than just stateless 12-factor or cloud-native appli‐
cations. Using the ability to mount persistent volumes into containers, applications
can save data that needs to be shared between instances or persist across restarts.

Persistent storage can be claimed based on the specific type or class of storage, and
the size of the persistent volume required. OpenShift will mount the persistent vol‐
ume into a container, and the storage will automatically follow the application, even if
the application is moved to a different node in the OpenShift cluster.

108 | Chapter 14: Working with Persistent Storage

CHAPTER 15

Resource Quotas and Limits

Whenever you interact with OpenShift, you will perform actions as a specific user. If
you are deploying applications, your actions will be carried out in the context of a
project. You cannot just do anything you like, though. Controls exist around what
you can do, as well as how many resources you can consume.

Quotas on resource objects control how many projects you create, how many applica‐
tions you can deploy, or how many persistent volumes you can use. A quota can also
be specified that limits the maximum amount of memory or CPU you can use across
all your applications. Limit ranges can further control how you use memory or CPU
by dictating how much an individual application can use.

Within any limit ranges defined, you can specify how much memory or CPU an
application actually requires. This allows you to partition up your overall memory
and CPU quotas to make best use of the available resources to deploy as many differ‐
ent applications or instances as you can. Defining how much memory and CPU your
application requires also helps the OpenShift scheduler to work out the best place to
run your application.

In this chapter you will learn about the quotas and limits that control how many
resources a project and application can consume. You will also learn about how to
specify how much memory and CPU your application needs.

What Is Managed by Quotas
Quotas are used to manage two categories of resources.

The first category is resource objects—i.e., how many objects you can create of cer‐
tain types. A quota on this category of resources might control how many projects

109

you can create, how many applications you are able to deploy, how many instances of
your application you can run, or how many persistent volumes you can use.

The second category is compute resources. A quota in this category could set the total
amount of CPU and memory resources you have available to use across all your
applications.

Quotas on compute resources may be defined depending on the type of workload. A
quota on non-terminating resources would be applied to the applications you have
permanently running. A quota on terminating resources would be applied to tempo‐
rary workloads, such as building an image from source code in OpenShift or running
a job.

Whether the projects you are working on are subject to resource quotas will depend
on how the OpenShift cluster has been configured. There are a couple of ways you
can determine whether quotas are being applied to a project.

Quotas and limit ranges are not predefined when you use Minishift
or oc cluster up. When using these, how much resources you can
consume is dictated by the amount of the underlying host has
available.

In the web console, you can view any quotas that are being applied to a project, by
selecting Quota from the Resources menu in the lefthand navigation bar
(Figure 15-1).

Figure 15-1. Resource quotas

110 | Chapter 15: Resource Quotas and Limits

From the command line, how you determine what quotas are being applied will
depend on whether they are applied on a per-project basis or across all the projects
you create.

When quotas are applied on a per-project basis, you can view them with the oc
describe quota command. If the quota is across multiple projects, you would
instead view them with the oc describe appliedclusterresourcequota command.

Any quota that is being applied will have been set up in advance by the cluster admin.
As a user, you have no ability to change the quotas through OpenShift.

Because there is a great deal of flexibility in how quotas are defined, different Open‐
Shift clusters may apply them differently. With a typical OpenShift cluster configura‐
tion you will see separate quotas for CPU and memory. It is also possible you may see
a quota only for memory. This is because a cluster admin can configure the cluster
such that CPU is limited in ratio to the amount of memory allocated to the container.
Using 1 Gi of memory for a container might translate to 2 CPU cores. Reducing the
memory allocated to a container in this scenario to 512 Mi would drop the limit on
the amount of CPU available to a single CPU core.

For additional information on this topic, see the OpenShift documentation on over‐
commitment of resources.

Quotas versus Limit Ranges
A quota sets an upper bound on the total amount of resources that can be consumed
across all your applications. The quota does not determine how many compute
resources an individual application can consume when multiple applications are
being deployed. The only constraint in that case is that the total compute resources
consumed by all applications cannot exceed the quota.

How many compute resources an individual application can consume is controlled by
a limit range. A limit range is applied on a per-project basis. You can find the limit
ranges for a project at the bottom of the quotas page in the web console, as shown in
Figure 15-2.

The limit range details are at the bottom of the same quotas page
that shows Cluster Quota, as mentioned in the previous section.
Navigate to Resources → Quota in the lefthand menu. Note that the
quota page is very long and has other details that aren’t shown.

Quotas versus Limit Ranges | 111

https://docs.openshift.org/latest/admin_guide/overcommit.html
https://docs.openshift.org/latest/admin_guide/overcommit.html

Figure 15-2. Limit ranges

The limit ranges can also be viewed from the command line using oc describe
limits.

If quotas have been defined for memory and CPU usage, limit ranges for those com‐
pute resources will also be defined for the project. This is necessary so that when an
application doesn’t define the amount of memory or CPU it requires, there are
default values that can be applied.

Requests Versus Limits
In addition to the definition of the amount of memory and CPU an application
requires factoring into quota calculations, it is also a major factor in how the Open‐
Shift scheduler works out where to deploy your application. When the scheduler
knows the minimum amount of memory and CPU you require, it can ensure that
your application is run on a node where there are enough compute resources avail‐
able to satisfy your request.

Even if quotas have not been defined, a cluster admin will normally still add limit
range definitions to projects. This will ensure that applications will always carry some
estimate of the compute resources they require, and the scheduler will be better able
to manage the placement of applications onto nodes.

When defining the required compute resources, you can define for each container a
request and a limit value for both CPU and memory. The request value indicates the
minimum amount of compute resources the application running in the container
requires. The limit is the maximum that it can grow to consume.

If a container doesn’t specify a request or limit value and a limit range defines a
default value for that compute resource, the default value is used.

Based on whether the request and limit values are set and their values, an application
will be assigned to a quality-of-service tier. This will affect how the application is
dealt with in situations such as when available resources on a node are low. An appli‐

112 | Chapter 15: Resource Quotas and Limits

cation marked with a lower quality of service is more likely to be evicted from a node
and restarted on a different node, potentially affecting the availability of the applica‐
tion.

For more details on how quotas and limits are applied, including quality-of-service
tiers, check out the OpenShift documentation on quotas and limit ranges.

Resource Requirements
To see the resource limits that are being applied to an application, you can run oc
describe on one of the pods for the application. This will show, for each container in
the pod, both the request and limit values for CPU and memory:

Limits:
 cpu: 500m
 memory: 256Mi
Requests:
 cpu: 40m
 memory: 204Mi

These are the values after taking the defined values from the deployment configura‐
tion and filling in missing values from the project default limits.

To see what values the deployment configuration had specified, run oc describe on
that:

Limits:
 memory: 256Mi

In this example, only the limit value for memory was specified. As such, the request
value was filled in from the project default limits. As CPU resource requirements
were not defined, these were also filled in from the project defaults.

To modify the resource requirements for your application, you can run the oc set
resources command:

$ oc set resources dc/blog --limits memory=512Mi
deploymentconfig "blog" resource requirements updated

For a typical OpenShift cluster, you will be able to set request and limit values for
both CPU and memory. Any values supplied must lie between the minimum and
maximum specified by the limit range for the resource, and the request cannot be
greater than the limit.

If you are not provided with a CPU quota, and available CPU is calculated in ratio to
memory, you will only be able to set the resource requirements for memory. It is also
possible with some OpenShift cluster configurations that any request value will be
ignored, with it being calculated as a percentage of the limit. Ask your cluster admin

Resource Requirements | 113

https://docs.openshift.org/latest/dev_guide/compute_resources.html

how quotas have been configured, or check their documentation for more details if
you’re using an OpenShift service provider.

Overriding Build Resources
Limit ranges do not apply to containers run when building images in OpenShift from
source. The request and limit values for builds on both CPU and memory are defined
globally for the whole cluster. A typical limit on memory for a build would be 512 Mi.
This may not be enough when installing some packages as part of an S2I build when
using the nodejs or python S2I builders.

These values for CPU and memory can be overridden, but at the time of writing this
book the oc set resources command could not be used to update a build configu‐
ration. By the time you are reading this, this likely will have changed. To change the
limit value for memory on a build configuration you can run:

$ oc set resources bc/blog --limits memory=1Gi
buildconfig "blog" resource requirements updated

If oc set resources doesn’t work for the version of OpenShift you are using, you
can instead use oc patch to update the build configuration:

$ oc patch bc/blog --patch '{"spec":{"resources":{"limits":{"memory":"1Gi"}}}}'
buildconfig "blog" patched

When setting memory and CPU limits for a build, the values need to be less than the
quota for terminating resources.

Summary
When you create a new project to hold your applications, quotas dictate how many
CPU and memory resources those applications can use. Separate quotas exist for
nonterminating and terminating workloads. The nonterminating quota is what is
applied to your applications. The terminating quota is what is applied to builds and
jobs.

If you don’t state explicitly how many resources your application requires, default val‐
ues will be applied for requested and maximum resources. Indicating the amount of
resources you require is important, as it enables OpenShift to schedule workloads to
where resources are available.

114 | Chapter 15: Resource Quotas and Limits

CHAPTER 16

Monitoring Application Health

When you deploy your application, OpenShift needs to know whether it has started
up correctly before traffic is sent to it. Even after it has started up, you want it to be
restarted if it is not working correctly.

To monitor the health of an application, you can define a readiness probe and a
liveness probe. OpenShift will periodically run the probes to watch over your applica‐
tion.

The readiness probe is used to determine whether your application is in a state where
it is okay for other applications or external users to communicate with it. The liveness
probe is used to determine whether your application is still running correctly.

In this chapter you will learn more about what each of these probes is for and what
actions are taken when they succeed or fail. You will also learn about the different
ways you can implement the probes.

The Role of a Readiness Probe
A readiness probe checks whether an application is ready to service requests.

When a new pod is created for your application, if you provide a readiness probe, it
will be used to periodically check whether the instance of your application running in
that pod is ready to handle requests. When the probe succeeds for the new pod, the
IP address for the pod will be added to the list of endpoints associated with the ser‐
vice.

Once the pod’s IP address is added to the list of active endpoints, other applications
will be able to communicate with it via the IP address or internal hostname of the
service. If a route has been created against the service, the routing layer will be recon‐

115

figured automatically so that external traffic can reach the application running in the
new pod.

If the probe keeps failing when the pod is starting, the deployment of that pod will be
deemed to have failed. This will result in the whole deployment or scaling-up event
failing.

If the probe is successful and the IP address is added to the endpoints, the probe will
still be used periodically to check that the application continues to be able to accept
requests. If the probe subsequently starts to fail, the IP address will be removed from
the list of endpoints associated with the service, but the pod will be left to run.

This failure of a probe after an application has been successfully started could be used
by an application to control where traffic flows in the event that the application queue
for handling requests has filled up for that instance. When the backlog of requests has
been cleared, the application should again pass the readiness check and the IP address
will be added back to the list of endpoints associated with the service.

If no readiness probe is provided, the pod will be assumed to always be ready, with
the IP address being added to the list of endpoints associated with the service as soon
as the pod is started and only removed if the pod is shut down.

It is recommended that a readiness probe always be used if using the Rolling deploy‐
ment strategy. This is because it ensures that a new pod will have requests directed to
it only when it’s ready, ensuring that you have zero downtime when deploying a new
version of your application.

The topic of deployment strategies and rolling deployments will be covered in more
detail in Chapter 17.

The Role of a Liveness Probe
A liveness probe checks whether an application is still working.

When you provide a liveness probe, it will be used to periodically check whether the
instance of your application running in a pod is still running and whether it is also
working correctly.

If the probe keeps failing, the pod will be shut down, with a new pod started up to
replace it.

Using an HTTP Request
The first mechanism by which a probe can be implemented is using an HTTP GET
request. The check is deemed successful if the HTTP response code returned by the
application for the request is between 200 and 399.

116 | Chapter 16: Monitoring Application Health

To register an HTTP request as a probe, run the oc set probe command against the
deployment configuration. Use the --readiness and/or the --liveness option,
depending on which types of probes you want to set up. Then use the --get-url
option to provide the URL for the handler implementing the probe:

$ oc set probe dc/blog --readiness --get-url=http://:8080/healthz/ready

When specifying the URL, leave out the hostname part. The hostname will be auto‐
matically filled in with the IP address of the pod that the probe is being used to check.
The port number must be specified and should be the port the application running in
the pod uses to accept connections for HTTP requests.

Although you could use an existing URL that a web application handles, it is recom‐
mended that you create dedicated handlers for each type of probe. This way you can
tailor each handler to implement checks specific to the type of probe.

To remove the probes, you can use the --remove option to oc set probe:

$ oc set probe dc/blog --readiness --liveness --remove

Using a Container Command
A probe relying on an HTTP request requires that the application be a web applica‐
tion, or that a separate web server be deployed in the same container or in a sidecar
container that can handle the request and perform the required checks. An HTTP
request would not be suitable for a traditional database.

The next mechanism by which a probe can be implemented is by using a command
executed inside the container that is running the application.

This could be any command that could be run at the command line in the container.
If the exit status of the command is 0, then the probe will be deemed successful.

To register a container command as a probe, you can run the oc set probe com‐
mand against the deployment configuration. Use the --readiness and/or the
--liveness option, depending on which types of probes you want to set up. Then
provide -- followed by the command to run:

$ oc set probe dc/blog --liveness -- powershift image alive

It is recommended not to make the command too complicated. Have the command
run a script provided with your application and embed any checks within that script.
This is because if the details of the check are part of the command—that is, part of the
deployment configuration in OpenShift—it will not be versioned along with your
application source code if you are using Git.

Using a Container Command | 117

Using a script in the application source code also makes it easier to change what the
check does, without needing to update the deployment configuration at the same
time as deploying a new version of your application.

For a database application, the probe script could run a database client command to
check whether the database is ready. For a web application, the probe script could
check that the web application is okay by making connections against $HOSTNAME:
8080. The $HOSTNAME environment variable will be automatically set for the container
to be the hostname for the pod. The port will need to be the one on which the web
application is accepting connections for HTTP requests.

If a suitable probe script has not been included in an application image, and the
checks required are too complicated to supply in the actual command, a config map
could be used to hold a script, with it being mounted into the container via a volume.
The command could then execute the script from the volume.

Using a Socket Connection
The final mechanism by which a probe can be implemented is by checking only
whether an application accepts a new socket connection. No actual data is sent over
the connection. This is suitable only in cases where the application only starts listen‐
ing for connections if it has started up successfully, and where acceptance of a new
connection is enough to indicate the application is running properly.

To register success of a socket connection as a probe, you can run the oc set probe
command against the deployment configuration. Use the --readiness and/or the
--liveness option, depending on which types of probes you want to set up. Then
provide the --open-tcp option with the port as an argument:

$ oc set probe dc/blog --readiness --liveness --open-tcp 8080

Probe Frequency and Timeouts
To view the details of any readiness or liveness probes, you can run oc describe on
the deployment configuration. Details on when the checks are run and tolerance for
failures will be displayed:

Liveness: exec [powershift image alive] delay=0s timeout=1s period=10s
 #success=1 #failure=3
Readiness: http-get http://:8080/healthz/ready delay=0s timeout=1s period=10s
 #success=1 #failure=3

The settings for each probe are:

118 | Chapter 16: Monitoring Application Health

delay

How long after a pod has been started, before the first check using the probe is
run

timeout

How long the probe is given to respond with a result before it is deemed to have
failed

period

How long after a previous check using a probe to wait before the next check is
run

#success

The number of successful checks in a row required for the probe to be deemed as
having passed

#failure

The number of unsuccessful checks in a row required for the probe to be deemed
as having failed

The default settings for these may not be appropriate for all applications.

To override the default settings when adding a probe, additional options can be
passed to oc set probe.

For example, to set the delay, you can use the --initial-delay-seconds option:

$ oc set probe dc/blog --readiness --get-url=http://:8080/healthz/ready \
 --initial-delay-seconds 10

Setting of an initial delay would be required in cases where during startup an applica‐
tion, although it may accept new connections for requests, might not be ready to start
handling live requests immediately and will return an HTTP error response until it is
ready.

The timeout value, which can be overridden by passing the --timeout-seconds
option, would need to be overridden in cases where the application doesn’t always
reliably respond with success within the default of one second.

If OpenShift is using containerd for running images in containers,
the timeout on a probe when using a container command is not
implemented. This is due to limitations in the implementation of
containerd and docker. For container commands, it is recom‐
mended that the probe script implement its own mechanism for
failing a probe after a set time. If this is not done and the probe
never returns, the probe will not be failed, nor will subsequent
probes be run.

Probe Frequency and Timeouts | 119

Summary
Health probes enable you to have OpenShift monitor the health of your application.
Probes come in two forms, readiness probes and liveness probes.

The readiness probe determines whether an instance of your application is ready to
handle traffic and should be included in the list of active instances for your service.
When a new instance of your application is started, the readiness probe is also used in
initially determining whether the application instance started up correctly and
whether a deployment succeeded or failed.

The liveness probe determines whether your application is running okay. If the
liveness probe fails for an instance of your application, that instance will be shut
down and a new instance created in its place.

120 | Chapter 16: Monitoring Application Health

CHAPTER 17

Application Lifecycle Management

When your application is being deployed, scaled up, redeployed, or shut down, it is
done following a set of prescribed steps. As you saw in the previous chapter, health
probes can be used to determine whether the application successfully starts, is ready
to accept requests, and continues to run correctly. These are, though, just part of a
larger process dictated by the deployment strategy being used.

OpenShift implements two basic deployment strategies. The default deployment
strategy is a Rolling deployment. The aim of this deployment strategy is to enable
zero-downtime deployments when rolling out an update to an application.

The second deployment strategy is Recreate. This is used when you cannot have mul‐
tiple instances, or versions, of your application running at the same time. It is also
necessary to use this deployment strategy when persistent storage is used that can
only be bound to a single node in a cluster at a time.

In this chapter you will learn more about these deployment strategies as well as how
to define lifecycle hooks, special commands that are executed at set points within a
deployment.

You will also learn about hooks that can be associated with the startup and shutdown
of individual pods.

Deployment Strategies
A deployment strategy defines the process by which a new version of your application
is started and the existing instances shut down.

To view what strategy a deployment is using, run the oc describe command on the
deployment configuration:

Strategy: Rolling

121

The version of OpenShift available at the time of writing this book did not provide a
dedicated command to change the deployment strategy. In older versions of Open‐
Shift you would need to edit the deployment configuration using oc edit, or run oc
patch to patch the deployment configuration in place:

$ oc patch dc/blog --patch '{"spec":{"strategy":{"type":"Recreate"}}}'

A new command, oc set deployment-strategy, is planned for a newer version of
OpenShift, which will allow you to set the deployment strategy to Recreate by run‐
ning:

$ oc set deployment-strategy dc/blog --recreate

To set the deployment strategy to Rolling with this command, you would use the
--rolling option.

Rolling Deployment
A rolling deployment slowly replaces instances of the previous version of an applica‐
tion with instances of the new version of the application. In a rolling deployment a
check will be run against a new instance (using the readiness probe) to determine
whether it is ready to accept requests, before adding its IP address to the list of service
endpoints and scaling down the old instance. If a significant issue occurs, the rolling
deployment can be aborted.

This is the default deployment strategy in OpenShift. Because it runs old and new
instances of your application in parallel and balances traffic across them as new
instances are deployed and old instances shut down, it enables an update with no
downtime.

A rolling deployment should not be used in the following scenarios:

• When the new version of the application code will not work with the existing
schema of a separate database, and a database migration is required first

• When the new and old application code cannot be run at the same time due to
reasons other than dependence on a separate database schema version

• When it wouldn’t be safe to run more than one instance of the application at the
same time, even of the same version

In these cases the Recreate deployment strategy should be used.

To enable additional actions when a deployment is occurring, you can define two
types of lifecycle hooks:

122 | Chapter 17: Application Lifecycle Management

Pre
This hook is executed before the first new instance of your application is created
for the new deployment.

Post
This hook is executed after all instances of your application for a deployment
have been successfully started and the old instances have been shut down.

A container will be created using the new version of the image and the command
specified for each hook will be run in it.

An example of a command from a pre lifecycle hook would be to enable a database
flag to put an application in read-only mode. When the deployment had completed
successfully, the post lifecycle hook could disable the flag.

In the event that a deployment fails, the post lifecycle hook will not be run. In this
example, that means the site would remain in read-only mode until a manual action
had been taken to work out what failed and the flag disabled.

To add a lifecycle hook, run the oc set deployment-hook command on the deploy‐
ment configuration. Pass the --pre or --post option to indicate which lifecycle hook
should be added. The command should follow --:

$ oc set deployment-hook dc/blog --pre -- powershift image jobs pre-deployment

$ oc set deployment-hook dc/blog --post -- powershift image jobs post-deployment

By default, no volumes will be mounted into the container the lifecycle hook is run in.
To specify volumes to mount from the deployment configuration, use the --volumes
option and provide the names of the volumes.

Any environment variables specified for the container in the deployment configura‐
tion will be passed to the container used to run the hook command. If you need to set
additional environment variables just for the hook, use the --environment option.

To remove a lifecycle hook, use the --remove option:

$ set deployment-hook dc/blog --remove --pre --post

Recreate Deployment
Instead of starting up new instances of your application while still running old
instances, when the Recreate strategy is used, the existing running instances of the
application will be shut down first. Only after all the old instances of the application
have been shut down will the new instances be started.

Recreate Deployment | 123

This deployment strategy should be used when you cannot run more than one
instance of your application at the same time, or when you cannot run instances
using old and new code at the same time.

It should also be used in cases where your application uses a persistent volume and
the type of the persistent volume is ReadWriteOnce. This is necessary as this type of
persistent volume can be attached to only one node in an OpenShift cluster at one
time.

If you are using the Rolling deployment strategy at the same time
as using a persistent volume of type ReadWriteOnce, resulting in
the deployment getting stuck, scale down the number of replicas of
your application to zero before switching to a Recreate deployment.
Once the application is stopped and the deployment strategy
changed, scale the number of replicas back up to one. This will
avoid the need to wait for the stuck deployment to time out.

With this strategy, as all old instances of the application will be stopped before
deploying instances with the new code, there may be a period of time when your
application is not available. Unless you have taken steps to first route traffic to a tem‐
porary application that shows a maintenance page, users will see an HTTP 503 Ser‐
vice Unavailable error response.

The pre and post lifecycle hooks can be defined when using this deployment strategy,
along with the following additional hook:

Mid
This hook is executed after all old instances of your application have been shut
down, but before any new instances of your application have been started.

The mid hook can be used to safely run any database migrations, as your application
will not be running at that point.

To add a mid lifecycle hook, run the oc set deployment-hook command on the
deployment configuration with the --mid option:

$ oc set deployment-hook dc/blog --mid -- powershift image migrate

Custom Deployments
In addition to these two basic deployment strategies, various other more complicated
strategies can be implemented, including Blue-Green or A/B deployment strategies.
These can be implemented by using multiple deployment configurations and reconfi‐
guring which pods for an application are associated with a service or route using
labels. Custom strategies like these can be set up manually, or you can provide an
image that embeds the logic for handling a deployment and that interacts with Open‐

124 | Chapter 17: Application Lifecycle Management

Shift via the REST API to make the changes in resources associated with the applica‐
tion. For further information, check out the OpenShift documentation on
deployment strategies.

Container Runtime Hooks
The pre, mid, and post hooks are only executed once for each deployment, regardless
of the number of replicas of your application you have. They can only be used to run
additional actions related to the overall deployment, and not for specific pods.

To perform special actions on each pod, you can define the following hooks:

postStart
This hook is executed immediately after a container is created. If it fails, the con‐
tainer is terminated and restarted according to its restart policy.

preStop
This hook is called immediately before a container is shut down. The container is
shut down after the hook completes. Regardless of the outcome of the hook, the
container will still be shut down.

A postStart hook could be used to trigger preloading of data into a cache used by a
particular instance of the application. A preStop hook could be used as a way to signal
a graceful shutdown of the application, allowing more control over how long the
application has to finish up current requests.

These hooks can be implemented as a command run within the container for the
application or as an HTTP GET request against the application running in the pod, or
just the act of creating a socket connection to the application could be used to trigger
some action.

The version of OpenShift available at the time of writing this book did not provide a
dedicated command to set the container hooks. It is necessary to use oc edit on the
deployment configuration, or use a JSON-style patch with the oc patch command.

To use oc patch to set a command to be executed for the preStop hook, create a patch
file pre-stop.json containing:

[
 {
 "op": "add",
 "path": "/spec/template/spec/containers/0/lifecycle/preStop/exec/command",
 "value": ["powershift", "image", "jobs", "graceful-shutdown"]
 }
]

Then run the oc patch command, using the patch file as input to the --patch option:

$ oc patch dc/blog --type=json --patch "`cat pre-stop.json`"

Container Runtime Hooks | 125

http://bit.ly/2EHos6t

The path attribute in the patch file indicates what value is being set in the deployment
configuration. The 0 after containers indicates the first container defined for the
deployment configuration. You may need to change this number if there are multiple
containers being run in the pod.

Init Containers
Container hooks allow the execution of actions for each instance of a pod, but they
can only act on an already running pod, either immediately after startup or prior to
shutdown. For the case of wanting to perform an action before the application starts,
you can use an init container.

Init containers are like regular containers in a pod, except that they run in sequence
and must each complete successfully before the next init container is run and finally
the application is started. An init container could be used to run a command using
the same image used for the application, or could use a different image.

One example of how an init container could be used is to update files in a persistent
volume from a directory in the application image, with the persistent volume then
being mounted on top of that same directory.

This would allow a persistent volume to be populated with the files from the image,
but also allow additional files to be added to the directory, either by the application or
manually, which would persist across restarts of the application. The additional files
could at a later date be incorporated into the image so they would be available for
completely new deployments.

For this use case, you would first mount the persistent volume against the application
container:

$ oc set volume dc/blog --add \
 --type=pvc --claim-size=1G --claim-mode=ReadWriteOnce \
 --claim-name blog-htdocs --name htdocs --mount-path /opt/app-root/src/htdocs

At this point the persistent volume will have hidden the files originally contained in
the image where the persistent volume was mounted, and the directory will appear to
be empty.

To copy the files from the application image to the persistent volume using an init
container, create a patch file called init-containers.json containing:

[
 {
 "op": "add",
 "path": "/spec/template/spec/initContainers",
 "value": [
 {
 "name": "blog-htdocs-init",

126 | Chapter 17: Application Lifecycle Management

 "image": "blog",
 "volumeMounts": [
 {
 "mountPath": "/mnt",
 "name": "htdocs"
 }
],
 "command": [
 "rsync",
 "--archive",
 "--no-perms",
 "--no-times",
 "/opt/app-root/src/htdocs/",
 "/mnt/"
]
 }
]
 }
]

Then run the oc patch command, using the patch file as input to the --patch option:

$ oc patch dc/blog --type=json --patch "`cat init-containers.json`"

The init container will mount the persistent volume, but it will mount it temporarily
on the directory /mnt. The files can then be copied from the application image to the
persistent volume. When the main application container runs, the persistent volume
will instead be mounted on the directory from which the files were copied.

One extra command you need to run before you are done is:

$ oc set image-lookup dc/blog

This is necessary as, unlike with regular containers in the pod, when using init con‐
tainers including the name of an image stream in the image field doesn’t automati‐
cally result in the field being resolved against an image stream. The oc set image-
lookup command enables local lookup so the name will be resolved against the image
stream for the application image.

Summary
Deployment strategies define the process by which a new version of your application
is started and the existing instances shut down. The two main deployment strategies
are Rolling and Recreate.

In the case of a Rolling deployment, for each instance of your application, a new
instance will be started up before the old instance is shut down. This ensures there is
always an instance of your application running and no downtime occurs.

Summary | 127

For Recreate, all instances of your application will be shut down before any new
instances are created. Users of your application will see it as being unavailable for a
period as the deployment occurs.

Which deployment strategy can be used is dictated by how your application is imple‐
mented and the type of persistent storage the application is using.

Within the overall flow of a deployment, it is possible to define hooks that allow you
to run additional actions, before, during, or after a deployment. Additional actions
can also be run for each instance of your application.

128 | Chapter 17: Application Lifecycle Management

CHAPTER 18

Logging, Monitoring, and Debugging

Development and deployment of your application may not always go smoothly. It is
therefore important to understand what tools are available in OpenShift for helping
you to debug issues.

The primary means of working out what is going on are the logs generated when you
build, deploy, and are running your application. These are supplemented by system
events generated by OpenShift. You can also monitor for changes to resource objects.

To debug your running application, you can start up an interactive terminal session
running inside your application container. For debugging why your application may
not be starting up, you can create a special container with your application image
where, instead of the application being run automatically, you are given an interactive
shell so you can start it up yourself.

In this chapter you will learn about how to access logs, how to interact with your
application using an interactive shell, and other methods for monitoring your appli‐
cation.

Viewing the Build Logs
When you build your application from source code in OpenShift, either using an S2I
builder or from a Dockerfile, the build process is co-ordinated by a build pod. Any
log output from the build process will be captured against this build pod.

To view the build logs for the last build run, you can run the oc logs command
against the build configuration for your application:

$ oc logs bc/blog
Receiving source from STDIN as archive ...
Pulling image "registry.access.redhat.com/rhscl/python-35-rhel7@sha256:..." ...
Collecting powershift-cli[image]

129

Downloading powershift-cli-1.2.5.tar.gz
....

If the build is still running, you can supply the --follow option to have the build fol‐
lowed to completion.

To debug the build process itself, you can define the BUILD_LOGLEVEL environment
variable for the build configuration. This will cause OpenShift to log messages about
what it is doing:

$ oc set env bc/blog BUILD_LOGLEVEL=9

In order to see logs from a prior build, first use oc get builds to get a list of the
builds, supplying a label selector if you have multiple applications deployed to the
same project:

$ oc get builds --selector app=blog
NAME TYPE FROM STATUS STARTED DURATION
blog-2 Source Git@9d745d3 Complete 2 minutes ago 59s
blog-1 Source Git@b6e9504 Complete 5 minutes ago 1m37s

You can then run oc logs against the specific build:

$ oc logs build/blog-1

You could also run oc get pods to see the list of all pods and run oc logs on the
build pod:

$ oc logs pods/blog-1-build

Because OpenShift will clean up old containers and builds, you will not have a full
history of builds. For an old build, although the record of the build may still exist, the
container and logs may have already been purged, and attempting to view the logs
will result in an error.

Viewing Application Logs
To view application logs using oc logs, you need to identify the pods for each
instance of your application and run oc logs on each:

$ oc get pods --selector app=blog
NAME READY STATUS RESTARTS AGE
blog-2-116wg 1/1 Running 0 5m
blog-db-1-1bss8 1/1 Running 0 30m

$ oc logs pod/blog-5-116wg
...

You can use the --follow option to oc logs to continually monitor the logs for that
pod.

130 | Chapter 18: Logging, Monitoring, and Debugging

By default no timestamps are shown for individual log messages unless the applica‐
tion itself adds them. To display alongside logged messages the time of the message as
captured by OpenShift, use the --timestamps option.

When a new deployment is running, you can view its progress by running oc logs
on the deployment configuration for the application:

$ oc logs --follow dc/blog
--> Scaling blog-2 down to zero
--> Scaling blog-3 to 1 before performing acceptance check
--> Waiting up to 10m0s for pods in rc blog-3 to become ready
--> Success

At other times, running oc logs on the deployment configuration will result in the
logs for the last pod to be created being displayed.

Logs for each pod can also be viewed in the web console, and when aggregated log‐
ging has been enabled for the OpenShift cluster by the cluster admin, you can see
them all together and perform queries against the logs. For more information, see the
OpenShift documentation on configuring aggregated logging.

Monitoring Resource Objects
Whether it be building an image, performing a new deployment, or running the
application, all work in OpenShift is typically run in a pod. You can see the list of
pods by running oc get pods, but this will just be the list of pods in existence at that
time. If you want to monitor a set of resource objects over time, you can pass the
--watch option to oc get. This will allow you to watch as pods are created and sub‐
sequently terminated:

$ oc get pods --watch
NAME READY STATUS RESTARTS AGE
blog-3-5jkg0 1/1 Running 0 1m
blog-2-build 0/1 Pending 0 0s
blog-2-build 0/1 ContainerCreating 0 0s
blog-2-build 1/1 Running 0 6s
blog-3-deploy 0/1 Pending 0 0s
blog-3-deploy 0/1 ContainerCreating 0 0s
blog-2-build 0/1 Completed 0 1m
blog-3-deploy 1/1 Running 0 5s
blog-3-5jkg0 1/1 Terminating 0 2m
blog-3-5jkg0 0/1 Terminating 0 2m
blog-4-d6xbx 0/1 Pending 0 0s
blog-4-d6xbx 0/1 ContainerCreating 0 0s
blog-4-d6xbx 0/1 Running 0 8s
blog-4-d6xbx 1/1 Running 0 10s
blog-3-deploy 0/1 Completed 0 32s
blog-3-deploy 0/1 Terminating 0 32s

Monitoring Resource Objects | 131

https://docs.openshift.org/latest/install_config/aggregate_logging.html

Monitoring System Events
Watching pods can give you a good view of what is changing in the system when a
new build and deployment are occurring. You can also see when a pod running an
instance of your application is terminated and restarted. What monitoring pods will
not tell you is why something happened.

Similarly, logs can tell you about what is happening with a build or in your applica‐
tion, including errors, but they don’t tell you about errors OpenShift itself may
encounter, or why OpenShift is taking particular actions.

To monitor what OpenShift is doing for applications running in your project, you can
use oc get events, passing the --watch option to monitor new events as they occur.
There are many types of events that can be generated. These include when new builds
are run, and when deployments are run when containers are stopped and started, as
well as errors such as failure of probes or exceeding a resource quota with a new
deployment.

Viewing Container Metrics
To determine how much of your resource quota you are using, you can use the Quota
page in the web console. The information here will tell you how much of your alloca‐
tion you have assigned to applications, but it is not a measure of how many resources
an application is actually using.

To determine how much an application is using, metrics charts can be found on the
project overview in the web console. This shows average use across all instances of
your application (see Figure 18-1).

Figure 18-1. Container metrics

Metrics for individual pods can be found on the web console pages for the pods, or
under the Monitoring page selected from the lefthand navigation bar of the project
overview.

132 | Chapter 18: Logging, Monitoring, and Debugging

Using the knowledge of how much CPU or memory an application is using, you can
increase the resource allocation to ensure it has enough resources, or reduce the allo‐
cation if it has more than required, allowing you to allocate resources to other appli‐
cations.

Running an Interactive Shell
Each instance of your application runs in a container, sandboxed off from everything
else. The only thing running in the container will be the application processes.

In order to debug what is happening inside the container with your application, you
can gain access to the container and run an interactive shell. To do this, run oc rsh
against the name of the pod:

$ oc rsh blog-4-d6xbx
(app-root)sh-4.2$

This will work for any container image that includes /bin/sh within the image. What
Unix tools you have access to when debugging your application will depend on what
was included in the image.

It is always a good idea to include tools such as vi, curl, ps, and top in images to help
make it easier to debug an application, check or modify files in the container or an
attached persistent volume, or see how much CPU and memory individual processes
running in the container are using.

If, rather than an interactive shell, you want to run just a single command that
requires no input, use oc exec:

$ oc exec blog-4-d6xbx env | grep HOSTNAME
HOSTNAME=blog-4-d6xbx

Debugging Startup Failures
If your application is failing on startup, with the container also being terminated,
OpenShift will keep attempting to restart it. If this keeps happening, the deployment
will fail. OpenShift will indicate this by setting the status of the pod to CrashLoopBack
Off.

To debug a container that will not start you can use the oc debug command, running
it against the deployment configuration for your application:

$ oc debug dc/blog
Debugging with pod/blog-debug, original command:
 container-entrypoint /tmp/scripts/run
Waiting for pod to start ...
Pod IP: 10.131.1.193

Running an Interactive Shell | 133

If you don't see a command prompt, try pressing enter.
(app-root)sh-4.2$

Rather than starting your application, an interactive shell session will be started. The
startup messages when oc debug is run will show what the original command was
that would have been run for the container.

From the shell, you can verify any environment variables or configuration files,
change them if necessary, and then run the original command to start your applica‐
tion. Any output from your command will be displayed in the terminal so you can see
what error may be occurring on startup.

When your application is started with oc debug, it will not be possible to connect to
it from any other pods using its service name, nor will it be exposed by a route for
your application if one was created. If you need to send it requests, use oc get pods
to get the name of the pod created for the debug session, then use oc rsh from a sep‐
arate terminal to get a second interactive shell in the container. You can then run a
command, such as curl, against the application from inside the container:

$ oc get pods
NAME READY STATUS RESTARTS AGE
blog-4-d6xbx 1/1 Running 0 1h
blog-debug 1/1 Running 0 6m

$ oc rsh blog-debug
(app-root)sh-4.2$ curl $HOSTNAME:8080
...

Because any persistent volumes defined in the deployment configuration will also be
mounted, if you are using a persistent volume type of ReadWriteOnce, you will first
need to scale down the application by running oc scale --replicas=0; otherwise,
the debug container will not be able to mount the persistent volume at the same time
and will fail to start.

Summary
OpenShift captures and logs the output from each instance of your application. To
interact directly with an application instance, you can start an interactive terminal
session within the container your application is running in. You can use this to check
settings of environment variables, look at config files, view the contents of files in
mounted persistent volumes, or directly interact with the processes that make up
your running application. Details about resources used can be determined using pro‐
cess monitoring tools within the container, or by looking at metrics collected by
OpenShift for overall pod usage.

Logs are also available covering the steps run to build an application image and
deploy it. You can monitor the progress of a deployment by watching the pods as they

134 | Chapter 18: Logging, Monitoring, and Debugging

are created and destroyed, and by watching events that OpenShift generates about
what it is doing and the errors that occur. Errors that occur when your application is
started can be investigated by starting a debug session in a special pod started with
the same environment as your application, but where an interactive shell is provided
rather than starting the application.

Summary | 135

Afterword

As OpenShift provides the capabilities of both CaaS and PaaS environments, making
it possible to host a large range of different applications, it is hard to choose what
should be covered in a book like this. As a developer myself, I have tried to focus on
the core features of OpenShift and using it to build and deploy applications.

By focusing on the fundamentals, I hope I have put you in a good position to better
understand OpenShift and how you can adapt it to develop and deploy your own
applications. Even if you don’t find everything in this book immediately relevant to
what you are doing now, my goal has been that it will serve as a useful reference you
can come back to for help later on.

What Was Covered
The core features of using OpenShift that were covered in this book were:

• Deploying an application from a pre-existing container image for your applica‐
tion

• Building a custom container image using instructions in a Dockerfile or from
application source code using an S2I builder

• Customizing the build process for constructing a container image, and how you
can create your own S2I builder

• Providing configuration and secrets to your application, and how to work with
persistent storage

• Making your web application visible to users outside the OpenShift cluster so
they can use it

• Controlling the amount of CPU and memory resources your application is able
to use

137

• Monitoring your application to determine whether it starts up correctly and con‐
tinues to keep running okay

• Strategies available for deploying your application and requirements for being
able to perform zero-downtime deployments

• Monitoring your application, and how to access it to debug problems when they
occur

Final Words
With each release of OpenShift, the breadth of what it can do keeps growing. This is
because of the constant work that is occurring upstream in the Kubernetes project
and also in other open source community projects that OpenShift combines with
Kubernetes.

If you are interested in contributing to the development of OpenShift, check out the
OpenShift Origin project. If you only want to track what is happening in OpenShift,
join the OpenShift Commons or subscribe to the OpenShift blog. These provide reg‐
ular updates on OpenShift and how people are using it, in the form of webinars, vid‐
eos, and blog posts.

If you have questions about using OpenShift, you can reach the OpenShift develop‐
ment team through the OpenShift mailing lists, or in the #openshift-dev channel on
IRC’s Freenode network. Community support for OpenShift Online can be found on
Google Groups or Stack Overflow.

138 | Afterword

https://www.openshift.org
http://commons.openshift.org
https://blog.openshift.com
https://lists.openshift.redhat.com/openshiftmm/listinfo
https://groups.google.com/d/forum/openshift
http://stackoverflow.com

Index

Symbols
#openshift-dev channel, 138

A
A/B deployment, 124
access modes, 104
access tokens, 16
acknowledgments, xiii
admin role, 23
application example

playground environments, 6
source code for, 6

application logs, 130
applications

adding to projects, 19-28
building from source, 41-49, 51-56
deleting, 34
deploying from images, 29-32
deploying from source, 41-49, 51-56
deploying using web console, 34-36
deployment overview, 5
images and security, 38
importing images, 36
lifecycle management for, 121-128
monitoring health of, 115-120
pushing to the registry, 37
runtime configuration, 33
scaling up, 33
updating builder image, 45
viewing in web console, 32

assemble scripts, overriding, 66

B
base64 encoding, 90

binary input builds, 46
Blue-Green deployment, 124
build artifacts

extracting and saving, 75
restoring, 75

build strategies (see also docker build strategy;
source build strategy, Source-to-Image)
custom, 42
docker, 51-56
overview of, 41
pipeline, 42
source, 42-49
speeding up build times, 73-78

buildconfig, 43
builder scripts, overriding, 66
builds logs, 129

C
caching, 73
catalog

adding S2I builders to, 63
deploying from, 24-26

CentOS, 1
chained builds, 77
cloud computing

Containers as a Service (CaaS), 4, 38
Platform as a Service (PaaS), 2, 4, 49, 56, 64,

83
service models, 2

Cloud Native Computing Foundation (CNCF),
ix, 4

clusters
accessing, 13-18
running, 7-11

139

CNAME records, 97
code repositories, read-only, 68
collaborators, adding, 22
command-line tool, 14-17
comments and questions, xii
compute resources

controlling with limit ranges, 111
managing with quotas, 110

configmap resource type, 87, 91
configuration

approaches to, 33
binary input builds, 46
config maps, 87
deleting config maps and secrets, 91
Docker build strategy, 53-55
passing environment variables, 85-87
secrets, 89
Source build strategy, 48
storing settings, 85
working with configuration files, 87-89

containers
container runtime hooks, 125
debugging startup failures, 133
history of, 2
init containers, 126
Kubernetes platform and, ix, 4, 38, 49, 83
orchestrating at scale, 3
Platform as a Service (PaaS), 4
pods and, 93
role of, 2
viewing container metrics, 132

Containers as a Service (CaaS), 4, 38
CrashLoopBackOff status, 133
custom build strategy, 41

D
data, copying to volumes, 108 (see also persis‐

tent storage)
debugging

build process, 130
exposing a pod, 100
interactive shells for, 129, 133-134
startup failures, 133

deployment
custom, 124
Docker build strategy, 53
from source, 41-49
from the catalog, 24-26
main methods of, 23

of a set of resources, 27
of existing container images, 26, 29-39
overview of, 5, 19, 127
re-create deployment strategy, 123
rolling deployment strategy, 116, 122
strategies for, 121
using web console, 34-36

deploymentconfig, 30, 31
docker build strategy

defined, 41
security issues, 52

Docker build strategy
benefits and drawbacks of, 57
build and runtime configuration, 53-55
creating builds, 52
deploying images, 53
overview of, 51
using inline Dockerfiles, 55

docker daemon, 52
Docker Hub, 29
docker tool, 3
Dockerfiles, 5, 51, 55
dotCloud, 3

E
edge termination, 98
edit role, 23
emptyDir volume type, 107
end-to-end integration tests, 48
endpoints, 95
environment variables

customizing S2I builds with, 65
passing, 85-87

error code 503 (Service Unavailable), 124
external ports, 99
external routes, 96

F
Fedora, 1
Freenode network, 138
fully qualified hostnames, 96

G
generic webhooks, 83
Git repositories

accessing private, 80
adding webhooks, 82
automating builds using, 5, 79

140 | Index

customizing build triggers, 83

H
health probes, 120 (see also monitors of appli‐

cation health)
HomeBrew, 8
hooks

container runtime hooks, 125
lifecycle hooks, 122
mid lifecycle hooks, 124
post lifecycle hooks, 123
post-commit hooks, 47
postStart hooks, 125
pre lifecycle hooks, 123
preStop hooks, 125
webhooks, 82

HTTP 503 Service Unavailable, 124
HTTP protocol, 98-101, 116

I
Image Specification (image-spec), 3
images

building from Dockerfiles, 51-56
customizing, 55
deploying your first, 29-32
importing, 36
overriding run script, 68
pushing to the registry, 37
security issues, 38
testing container images, 47
updating image metadata, 69-71

imagestream, 30
incremental builds, 74, 76
Infrastructure as a Service (IaaS), 2
init containers, 126
integration tests, 48
interactive shells, 133
internal image registry, 37
internal ports, 99
IP addresses, 94-96, 115

K
Katacoda, x
Kubernetes platform, ix, 3, 38, 49, 83

L
life cycle hooks

webhooks, 82

lifecycle hooks
container runtime hooks, 125
mid lifecycle hooks, 124
post lifecycle hooks, 123
post-commit hooks, 47
postStart hooks, 125
pre lifecycle hooks, 123
preStop hooks, 125
purpose of, 122

lifecycle management
container runtime hooks, 125
custom deployments, 124
deployment strategies, 121
init containers, 126
overview of, 121, 127
re-create deployment, 123
rolling deployment, 122

limit ranges, 111
Linux Container project (LXC), 2
liveness probes, 116 (see also monitors of appli‐

cation health)
local filesystems, 46, 103
local interprocess communication (IPC), 94
local port forwarding, 100
localhost, 94
logging and monitoring (see also monitors of

application health)
debugging startup failures, 133
monitoring resources objects, 131
monitoring system events, 132
overview of, 129, 134
running an interactive shell, 133
viewing application logs, 130
viewing builds logs, 129
viewing container metrics, 132

M
metadata, updating, 69-71
mid lifecycle hooks, 124
Minishift, x, 8-11
monitors of application health (see also logging

and monitoring)
liveness probes, 116
overview of, 115, 120
probe frequency and timeouts, 118
readiness probes, 115
using container commands, 117
using HTTP requests, 116
using socket connections, 118

Index | 141

multitenant network overlay, 96

N
name aliases, 30
networking

connecting between projects, 96
containers and pods, 93
creating external routes, 96
exposing non-HTTP services, 100
internal and external ports, 99
local port forwarding, 100
multitenant network overlay, 96
overview of, 93, 101
services and end points, 94-96
using secure connections, 98

non-HTTP services, 100
non-standard ports, 100

O
obfuscated values, 90
oc adm pod-network command, 96
oc adm policy command, 23
oc cluster down command, 11
oc cluster up --help command, 11
oc cluster up command, 10, 20
oc command-line tool, 14-17
oc create configmap command, 87
oc create imagestream command, 37
oc create route command, 98
oc create secret generic command, 90
oc debug command, 133
oc delete all command, 92
oc delete command, 34
oc delete pvc command, 107
oc describe appliedclusterresourcequota com‐

mand, 111
oc describe command, 82, 83, 113, 121
oc describe limits, 112
oc describe pod command, 94
oc describe quota command, 111
oc expose command, 30
oc expose service command, 96
oc expose svc command, 43
oc get -o json command, 87
oc get all command, 31
oc get builds command, 130
oc get command, 30
oc get endpoints command, 95
oc get events command, 132

oc get imagestreams command, 26
oc get is command, 36
oc get pods command, 31, 94, 100, 130
oc get pods,services command, 95
oc get pvc command, 105
oc get rolebindings command, 23
oc get routes command, 32, 43
oc get templates command, 22, 25
oc help command, 17
oc import-image command, 36
oc label command, 92
oc login --help command, 17
oc login command, 16
oc logs -f bc command, 43
oc logs command, 129
oc new-app --name command, 42
oc new-app -L command, 26
oc new-app -S command, 26
oc new-app command, 30, 44, 52, 53
oc new-build command, 44, 53
oc new-project command, 22
oc options command, 17
oc patch command, 125
oc port-forward command, 100
oc projects command, 22
oc rsh command, 94, 133
oc rsync command, 69, 108
oc scale command, 33
oc set build-hook command, 47
oc set deployment-hook command, 123
oc set deployment-strategy, 122
oc set env --list command, 33, 88
oc set env command, 33, 86
oc set probe command, 117
oc set resources command, 113
oc set triggers command, 83
oc set volume --add command, 105
oc set volume --remove command, 106
oc start-build command, 45, 46
oc status command, 31
oc types command, 30
oc whoami --show-server command, 11
oc whoami --token command, 17
oc whoami command, 23
online resources, x, 138
Open Container Initiative (OCI), ix, 3
OpenShift

application deployment, 5
benefits of, ix, 28, 137

142 | Index

documentation, x
enterprise products, xi
installing and running, 7-11
online resources, x, 138
overview of, ix, 1
product releases, xi
source code for, x
topics covered, ix-x, 5, 137

OpenShift blog, xi, 138
OpenShift Commons, xi, 138
OpenShift Container Platform, xi, 8
OpenShift Dedicated, 7
OpenShift Interactive Learning Portal, 6
OpenShift Online, xi, 7, 37
OpenShift Origin, x, 8, 10, 138
OpenShift REST API, 17
orchestration layer, 3

P
passthrough connection, 98
patches, 45
persistent storage

access modes for, 104
claiming persistent volumes, 105
copying data to volumes, 108
deleting persistent volumes, 107
overview of, 103
re-create deployment and, 124
reusing persistent volume claims, 106
sharing between applications, 106
sharing between containers, 107
types of, 103
unmounting persistent volumes, 106

pipeline build strategy, 41
Platform as a Service (PaaS), 2, 4, 49, 56, 64, 83
playground environments, 6
pod resource objects, 31
pods

connecting to, 94
container runtime hooks, 125
exposing, 100
metrics for, 132
monitoring over time, 131
overview of, 93
readiness probes and, 115
services and end points, 94-96
sharing persistent volumes within, 107

ports
internal and external, 99

local port forwarding, 100
non-standard, 100

POSIX shared memory, 94
post lifecycle hooks, 123
post-commit hook, 47
postStart hooks, 125
pre lifecycle hooks, 123
preStop hooks, 125
probes, 115-116
projects

adding collaborators to, 22
connecting between, 96
creating, 20-22
deploying applications, 23-26
deploying images, 26
deploying resources, 27
role of, 19

Q
qualified hostnames, 96
questions and comments, xii
quotas, 109-114

overriding for builds, 114
overview of, 114
requests vs. limits, 112
resource quotas vs. limit ranges, 111
types of, 109
viewing and modifying resource limits, 113

R
re-create deployment strategy, 123
re-encrypting traffic, 98
readiness probes, 115 (see also monitors of

application health)
ReadOnlyMany (ROX), 104
ReadWriteMany (RWX), 104
ReadWriteOnce (RWO), 104, 124
Red Hat Container Development Kit, xi, 10
Red Hat Developers program, xi
Red Hat Enterprise Linux (RHEL), 1
replicationcontroller, 31
resource objects

monitoring, 131
pod resource objects, 31
quota restrictions, 109
service resource objects, 95

resource quotas, 109-114
overriding for builds, 114
overview of, 109, 114

Index | 143

quotas vs. limit ranges, 111
requests vs. limits, 112
types of, 109
viewing and modifying resource limits, 113

resources, online, x, 138
REST API endpoints, 17
rolling deployment strategy, 116, 122
root users, 38, 52, 99
routes

creating external, 96
secured, 98

run scripts, overriding, 66, 68
runtime images, overriding, 68
Runtime Specification (runtime-spec), 3

S
save-artifacts script, 75
scaling, 3, 33
secret information, 85, 89-92
security issues

docker build strategy, 52
sandbox environments, 38
secret information, 85, 89-92
using secure connections, 98

Security-Enhanced Linux (SELinux), ix
Server Name Identification (SNI), 98, 100
service, 30
service resource objects, 95
services, exposing, 96
shared memory access, 107
socket connections, 118
Software as a Service (SaaS), 2
Source build strategy

binary input builds, 46
build and runtime configuration, 48
building from local source, 46
creating separate builds, 43
defined, 41
deploying from source, 42
overview of, 42
testing container images, 47
triggering new builds, 45

source code
assembling for S2I builds, 59
building applications from, 5, 41-49
for OpenShift, x
sample application, 6

Source-to-Image (S2I)
adding S2I builders to the catalog, 63

assembling source code, 59
benefits and drawbacks of, 51
building application images, 58
building S2I builder images, 62
creating S2I builder images, 60-62
customizing S2I builds, 65-71
list of pre-installed builders, 25
overriding S2I build scripts, 66
overview of, 57, 64
Source build strategy and, 42
speeding up build times, 73-78
using with OpenShift, 62

SSL certificates, 98
storage classes, 103 (see also persistent storage)
system events, monitoring, 132
SystemV semaphores, 94

T
temporary file-storage facilities (tmpfs), 90
timestamps on log messages, 131
triggers

image change, 45
tracking source code changes with, 45

typographical conventions, xi

U
Unix root users, 38, 52, 99
updates, 45, 122
user-defined HTTP callbacks, 82

V
versioned source code repositories, 85
view role, 23
virtual machines (VMs), 8

W
web console

Add to Project button, 25, 34
adding S2I builders to the catalog, 63
container metrics, 132
Deploy Image tab, 26, 35
deployment using, 34-36
Import YAML/JSON tab, 27
interacting with, 13
Monitoring pages, 132
New Project button, 20
project list, 21
resource quotas, 110

144 | Index

viewing applications in, 32
viewing defined quotas, 110
viewing limit ranges, 112

webhooks, 82-83
workflow, automating, 41, 79-84

Index | 145

About the Author
Graham Dumpleton is a Developer Advocate for OpenShift at Red Hat. Graham is
an active member of the Python software developer community and is the author of
mod_wsgi, a popular module for hosting Python web applications in conjunction with
the Apache HTTPD web server. He also has a keen interest in Docker and Platform as
a Service (PaaS) technologies.

Colophon
The animal on the cover of Deploying to OpenShift is the sulphur-crested cockatoo
(Cacatua galerita).

The sulphur-crested cockatoo grows to a length of 44–55 cm (17.5–21.5 in); Austral‐
ian subspecies are larger than those from New Guinea. The crested cockatoo’s plu‐
mage is white with yellow-tinged underwings and tails and yellow crests. Their bills
are black, and they have grey legs.

This large white cockatoo is often found in wooded habitats of Australia, New
Guinea, and the Indonesian islands. The sulphur-crested cockatoo is often considered
a pest because of its large numbers in suburban habitats and its loud and raucous call.
They are also known to damage fruit and cereal crops, newly planted seedlings, or
soft timber. These birds are considered very intelligent and curious. They can live up
to 70 years in captivity and 20–40 years in the wild. Unlike most birds, they produce a
fine powder to waterproof themselves rather than oil, and they are known to eat clay
to detoxify their food, also known as geophagy.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from English Cyclopedia. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Online Resources
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. The OpenShift Container Platform
	The Role of Containers
	Orchestrating at Scale
	Containers as a Service
	Platform as a Service
	Deploying Your Application

	Chapter 2. Running an OpenShift Cluster
	Using OpenShift Online
	Installing OpenShift Origin
	Launching Using Minishift
	Running oc cluster up
	Summary

	Chapter 3. Accessing the OpenShift Cluster
	Using the Web Console
	Using the Command Line
	Using the OpenShift REST API
	Summary

	Chapter 4. Adding Applications to a Project
	The Role of a Project
	Creating a Project
	Adding a Collaborator
	Deploying Applications
	Deploying from the Catalog
	Deploying an Image
	Deploying a Set of Resources
	Summary

	Chapter 5. Deploying Applications from Images
	Deploying Your First Image
	Scaling Up the Application
	Runtime Configuration
	Deleting the Application
	Deploying Using the Web Console
	Importing an Image
	Pushing to the Registry
	Images and Security
	Summary

	Chapter 6. Building and Deploying from Source
	The Source Build Strategy
	Deploying from Source
	Creating a Separate Build
	Triggering a New Build
	Building from a Local Source
	Binary Input Builds
	Testing the Container Image
	Build and Runtime Configuration
	Summary

	Chapter 7. Building an Image from a Dockerfile
	The Docker Build Strategy
	Security and Docker Builds
	Creating the Build
	Deploying the Image
	Build and Runtime Configuration
	Using an Inline Dockerfile
	Summary

	Chapter 8. Understanding Source-to-Image Builders
	The Source-to-Image Project
	Building the Application Image
	Assembling the Source Code
	Creating an S2I Builder Image
	Building the S2I Builder Image
	Using the S2I Builder with OpenShift
	Adding an S2I Builder to the Catalog
	Summary

	Chapter 9. Customizing Source-to-Image Builds
	Using Environment Variables
	Overriding the Builder Scripts
	Read-Only Code Repositories
	Overriding the Runtime Image
	Updating the Image Metadata
	Summary

	Chapter 10. Using Incremental and Chained Builds
	Faster Builds Using Caching
	Using Incremental Builds
	Saving Artifacts from a Build
	Restoring the Build Artifacts
	Enabling Incremental Builds
	Using Chained Builds
	Summary

	Chapter 11. Webhooks and Build Automation
	Using a Hosted Git Repository
	Accessing a Private Git Repository
	Adding a Repository Webhook
	Customized Build Triggers
	Summary

	Chapter 12. Configuration and Secrets
	Passing Environment Variables
	Working with Configuration Files
	Handling of Secret Information
	Deleting Configuration and Secrets
	Summary

	Chapter 13. Services, Networking, and Routing
	Containers and Pods
	Services and Endpoints
	Connecting Between Projects
	Creating External Routes
	Using Secure Connections
	Internal and External Ports
	Exposing Non-HTTP Services
	Local Port Forwarding
	Summary

	Chapter 14. Working with Persistent Storage
	Types of Persistent Storage
	Claiming a Persistent Volume
	Unmounting a Persistent Volume
	Reusing a Persistent Volume Claim
	Sharing Between Applications
	Sharing Between Containers
	Deleting a Persistent Volume
	Copying Data to a Volume
	Summary

	Chapter 15. Resource Quotas and Limits
	What Is Managed by Quotas
	Quotas versus Limit Ranges
	Requests Versus Limits
	Resource Requirements
	Overriding Build Resources
	Summary

	Chapter 16. Monitoring Application Health
	The Role of a Readiness Probe
	The Role of a Liveness Probe
	Using an HTTP Request
	Using a Container Command
	Using a Socket Connection
	Probe Frequency and Timeouts
	Summary

	Chapter 17. Application Lifecycle Management
	Deployment Strategies
	Rolling Deployment
	Recreate Deployment
	Custom Deployments
	Container Runtime Hooks
	Init Containers
	Summary

	Chapter 18. Logging, Monitoring, and Debugging
	Viewing the Build Logs
	Viewing Application Logs
	Monitoring Resource Objects
	Monitoring System Events
	Viewing Container Metrics
	Running an Interactive Shell
	Debugging Startup Failures
	Summary

	Afterword
	What Was Covered
	Final Words

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

