
redhat.com

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

EXECUTIVE SUMMARY

Business experts and application developers in enterprise organizations need to be able to

model, automate, measure, and improve their critical processes and policies. Red Hat® Decision

Manager makes this possible with fully integrated business rules management, resource con-

straint optimization, and complex event processing (CEP).

Accommodating change and avoiding feature decay when designing and developing applications

is necessary for aligning systems with the requirements brought on by competitive pressures,

increased demands for regulatory compliance, and technological advancements. As leading

companies strive to keep pace with emergent technologies, the fast and frequent release of soft-

ware may be achieved using what some agilists call the “three amigos”: test-driven development

(TDD), behavior-driven development (BDD), and domain-driven design (DDD). These three con-

cepts comprise an approach to decision development that ensures predictable and productive

processes. And with a combination of software and professional services, enterprise organiza-

tions can help better keep pace with the demands of a rapid global marketplace.

By introducing these application life-cycle management frameworks and illustrating how they

may be harnessed with Red Hat Decision Manager applications, Red Hat Consulting helps its

clients realize business value from agile approaches coupled with proven architectures. Red Hat

Consulting helps clients improve speed to market, reduce risk, and sustain quality.

This whitepaper offers an introduction to these approaches and explains how enterprise organi-

zations can keep pace with the demands of our rapid global marketplace with a combination of

software and professional services from Red Hat.

THE “THREE AMIGOS”

Gojko Adzik is the author of Specification By Example, a book explaining applications of the

behavior-driven development methodology. Adzik introduced “the three amigos” in a presen-

tation at the DDD eXchange Conference in 2010.1 His thesis demonstrates the basis for, and

advantages of, test-driven development. Test-driven development, when complimented by

domain-driven design and behavior-driven development, allows a customer-centric approach to

sustainable agile practice.

“Test-driven
development (TDD),

behavior-driven
development (BDD),
and domain-driven

development (DDD)
comprise an approach

to decision development
that ensures predictable

and productive
processes.”

JUSTIN HOLMES

ARCHITECT,

RED HAT CONSULTING

 1 Adzik, Godjco. “The three amigos.” DDD eXchange 2010. slideshare.com.
http://www.slideshare.net/skillsmatter/ddd-exchange-2010-gojko-adzic-on-ddd-tdd-bdd

BEHAVIOR-DRIVEN DEVELOPMENT AND
DECISION MANAGEMENT
Deliver the right product to market faster with decision management and
behavior-driven development (BDD)

WHITEPAPER

http://redhat.com
http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
http://www.slideshare.net/skillsmatter/ddd-exchange-2010-gojko-adzic-on-ddd-tdd-bdd

2redhat.com WHITEPAPER Behavior-driven development and decision management

TEST-DRIVEN DEVELOPMENT (TDD)

TDD is a software development process that integrates quality assurance into define-build-test

teams. Known to some as “test-first” programming, TDD originated as an aspect of extreme pro-

gramming (XP), an agile discipline for speeding software development. Popular agile and scrum

practices now incorporate TDD into the development life cycles of many organizations. Red Hat

consultants use TDD to automate unit tests and exercise knowledge engines throughout iterative

development life cycles. By first writing a test and then creating modules to allow the test to pass,

the development effort is driven by first codifying the requirements and then authoring the rules to

meet the requirement. By addressing how to represent the business requirements first, this helps to

involve business analysts up front and ensure that the decisions being modeled are going to achieve

the intended outcome.

DDD

TDD

Experimentation
iterative design

Collaboration
business focus

Automation
test-first

BDD

Figure 1: The intersection of test-driven development, domain-driven design, and behavior-driven development

http://redhat.com

3redhat.com WHITEPAPER Behavior-driven development and decision management

DOMAIN-DRIVEN DESIGN (DDD)

Domain-driven design (DDD) is an approach to software development that acknowledges the com-

plexity of software development. In order to control and manage the impact of this complexity, Eric

Evans, author of Domain-Driven Design, advocates the development of a domain model, which (in his

words) is a model that:

 “...discards the dichotomy of an analysis model and design to search out a single model that serves

both purposes. Setting aside purely technical issues, each object in the design plays a conceptual

role described in the model. This requires development teams to be more demanding of the chosen

model since it must fulfill two quite different objectives.”2

To this end, Evans encourages the use of a “ubiquitous language” — common vocabulary that conveys

a shared understanding between subject matter experts and software developers. This language

gives life to a domain model by connecting the designs of the whiteboard with the objects in an

application. Domain-driven design uses a layered architecture and a set of object design patterns

discussed later in this paper. Red Hat Consultants apply these techniques in a variety of enterprise

development contexts to create effective decision-centric domain models. The results have been

promising and provide empirical evidence of improved development and deployment of applications

in complex domain contexts.

BEHAVIOR-DRIVEN DEVELOPMENT (BDD)

BDD is a software development process that combines the principles of TDD with the object-oriented

analysis and design of DDD. By focusing on the creation of specific examples of domain model behav-

ior, BDD provides developers and business analysts with a common forum to collaboratively develop

“ubiquitous language.” Using a variety of open source tools, Red Hat Consulting implements BDD

solutions that provide automated testing and reporting using language that is a central element of

both DDD and BDD. This underpinning of customer collaboration practices is central to agile frame-

works and helps align delivered software with the emerging requirements of the customer.

The intersection of these three processes creates an approach that facilitates empirical process

control, including inspection, adaption, and transparency. By using tests to illustrate and demon-

strate the empirical features of working software, stakeholders can review features with developers

after each iteration. Establishing a domain vernacular that allows stakeholders and developers to

innovate through business-oriented conversations improves knowledge transfer. Living documenta-

tion remains with the code to codify requirements, evolving alongside applications to ensure change

is embraced rather than resisted. TDD, DDD, and BDD facilitate the inspection, adaptation, and trans-

parency required by agile approaches. (See Figure 1.)

ITERATIVE SOFTWARE DEVELOPMENT AND TESTING USING BDD

Clients striving to keep up with the pace of change are turning to agile frameworks to organize and

sustain ongoing “design-build-test teams.” These teams use iterative development practices to avoid

the delays associated with waterfall and big-bang development approaches. Through TDD, agile

teams release high quality software achieved through rigorous unit testing and increased code cov-

erage. These approaches are integrated into an automated build in order to practice of continuous

integration. BDD takes this a step further by establishing a ubiquitous domain language in the ver-

nacular of the customer.

 2 Evans, Eric. Domain-Driven Design. O’Reilly Media. 2003. p.49

http://redhat.com

4redhat.com WHITEPAPER Behavior-driven development and decision management

Through specification by example, requirements are captured in scenarios that document the

success criteria found in user stories and other artifacts. These scenarios, in a “given-when-then”

format, may be automated through software frameworks like Cucumber, JBehave, and xUnit. Tests

are then stored and managed within source code control environments, such as Git, and provide

living documentation that evolves with the accompanying applications’ source code. Tests are exe-

cuted using open source continuous integration tools like Jenkins. Test results may be reported and

distributed to help identify and remedy defects throughout the development life cycle. This is unlike

serial testing, which often doesn’t occur until late in a waterfall development process.

Figure 2: An example scenario that may be automated with Cucumber using BDD3

By capturing requirements in a domain language familiar to business stakeholders, working soft-

ware is demonstrated and reviewed in an iterative delivery process. Revisions to requirements can

be captured and maintained with the application source code. This customer-driven technique yields

a level of knowledge transfer and customer collaboration that allows for ongoing innovation. Work

may be prioritized by business value, risk, complexity, and organizational enablement due to the

close contact and ongoing interaction with subject matter experts and stakeholders.

 3 “Cucumber (software).” en.wikipedia.org, https://en.wikipedia.org/wiki/Cucumber_(software)

http://redhat.com
https://en.wikipedia.org/wiki/Cucumber_(software)

5redhat.com WHITEPAPER Behavior-driven development and decision management

Deliverable
code

Automated
acceptance test

Customer

ATDD

TDD

Acceptance
criteria

Unit test

Figure 3: An iterative approach with integrated testing

DOMAIN-DRIVEN DESIGN AND THE DECISION MANAGER KNOWLEDGE BASE

The domain model developed via a DDD process represents a rigorously structured executable

model of the business architecture, in which “...each object in the design plays a conceptual role

described in the model.”4 In other words, a proper domain model should exhibit the following

two traits:

• Subject matter experts agree that the domain model represents the knowledge needed to auto-

mate their business architecture

• Software engineers agree that the domain model alone is responsible for the business behavior

exhibited by the overall system.

When viewed through this lens, a proper domain model should be considered a formal knowl-

edge base as described by Ronald Brachman and Hector Levesque, the coauthors of Knowledge

Representation and Reasoning. The domain model can be said to adhere to what is called the knowl-

edge representation hypothesis by the philosopher Brian Smith.

 4 Tirelli, Edson, “BRMS Best and Worst Practices And Real World Examples.” dmcommunity.files.wordpress.com. 2016.
https://dmcommunity.files.wordpress.com/2016/01/rulesfest2011-101_edsontirelli__
brmsbestandworstpracticesandrealworldexamples.pdf

http://redhat.com
https://dmcommunity.files.wordpress.com/2016/01/rulesfest2011-101_edsontirelli__brmsbestandworstprac
https://dmcommunity.files.wordpress.com/2016/01/rulesfest2011-101_edsontirelli__brmsbestandworstprac

6redhat.com WHITEPAPER Behavior-driven development and decision management

“Any mechanically embodied intelligent process will be comprised of structural ingredients that a) we

as external observers naturally take to represent a propositional account of the knowledge that the

overall process exhibits, and b) independent of such external semantic attribution, play a formal but

causal and essential role in engendering the behaviour that manifests that knowledge.”5

THE RED HAT APPROACH

Knowledge representation and reasoning is considered by many the core subject of artificial intel-

ligence, and it is in this rich field of study that hybrid reasoning systems such as Red Hat Decision

Manager take root. Connecting the theoretical underpinnings of both the technologies and method-

ologies used to deliver solutions is a fundamental component of the Red Hat Consulting approach.

To provide software developers with building blocks to create domain models, Eric Evans offers

a handful of immensely powerful object-oriented design patterns. Developers familiar with open

source frameworks, such as Hibernate and Spring Data, will recognize many of these terms, as they

have become common conceptual components of modern software development.

• Entities. Objects defined by their continuity and identity, not by the value of their attributes

• Value objects. Immutable objects used to describe the attributes of other objects

• Aggregates. Entities that manage the life cycle of the objects they own

• Factories. Objects that handle the creation of complex entities and aggregates

• Repositories. Objects that abstract the access of pre-existing aggregates and are interfaced with

the application

• Services. Objects that encapsulate complex logic that doesn’t naturally belong in a single object

Of particular interest to Decision Manager applications is the concept of the domain service. At the

core of Decision Manager is an implementation of sophisticated pattern-matching algorithms which

support complex behavior expressed by the confluence of several objects. Take for example the rule

found in Figure 4 below.

To notify a customer that their delivery is 30 minutes away, several objects in the model must be

inspected and each one must conform to a certain pattern. However, implementing this behavior

in different objects would unnaturally fracture the single concept of alerting a customer of their

impending delivery. By moving this concept to a domain service implemented with Decision Manager,

complex relationships between numerous objects can be captured in a single location within the

model using a technology optimized for the behavior.

 5 Brachman, Ronald and Levesque, Hector. Knowledge Representation and Reasoning. O’Reilly Media. 2004. pp. 5-6

http://redhat.com

7redhat.com WHITEPAPER Behavior-driven development and decision management

INCREASING SPEED TO MARKET WITH SIMPLIFIED ARCHITECTURE DESIGN
AND DECISION ENGINES

Simplifying architecture is a way to decrease the time it takes to initially develop an application as

well as reduce the time and cost to maintain it. Conventional model view controller (MVC) application

architectures have traditionally been employed for online applications that do not require enterprise

scalability. The services associated with data access, RESTful interfaces, and multitenant environ-

ments are critical to larger enterprise applications.

This hybrid architecture looks to create a layered architecture that aligns with microservices or ser-

vice-oriented-architecture (SOA). DDD presents an architecture that puts the domain at the center of

these common architectures. It takes advantage of Decision Manager’s unique ability to be embed-

ded as Java™ archive (JAR) files in a simple Java application deployed as a microservice or web

application archives (WAR).

Figure 4: A sample of rules used within a knowledge engine

http://redhat.com

8redhat.com WHITEPAPER Behavior-driven development and decision management

USER INTERFACE LAYER

The user interface layer makes up the view component of the layered architecture, which can be

implemented with any modern JavaScript framework such as React, Angular, or Backbone. This

layer is just focused on how information is displayed to users and how they can interact with it.

APPLICATION LAYER

The application layer makes up the controller components of a layered architecture. The web service

API, web application controllers, integration technologies, and batch frameworks might be included

at this level. This layer defines the purpose of the application and also the various services to be

exposed across the enterprise to promote re-use and utilization of standardized protocols such

as REST.

DOMAIN LAYER

The domain layer makes up the model component of a layered architecture and is home to the

domain model. This layer should generally be developed as its own JAR and can take advantage of

Decision Manager’s unique capability to be embedded as a small subset of Java dependencies or use

Decision Manager’s out-of-the-box KIE server, which provides a simple way to expose decisions as

REST or JMS services.

User interface
layer

Accepts user commands and presents information
back to the user

Application
layer

Manages transactions, translates DTOs,
coordinates application activities, creates and
accesses domain objectives

Domain
layer Contains the state and behavior of the domain

Infrastructure
layer

Supports all other layers, includes repositories,
adapters, frameworks, etc.

Figure 5: A layered architecture based on a domain model approach

http://redhat.com

9redhat.com WHITEPAPER Behavior-driven development and decision management

INFRASTRUCTURE LAYER

The infrastructure layer provides the technical details of connections to external data sources. Most

enterprise-class systems require connections to multiple data sources, so it can be helpful to provide

repository interfaces in the domain layer and repository implementations in the infrastructure layer.

Object relational model (ORM) technologies such as Hibernate, a community project from

Red Hat, can be used to model data sources as objects and ensure loose coupling to specific data-

base technologies.

This layered approach simplifies the architecture of the applications and builds on the simplicity and

elegance of the domain model, facilitated through the DDD mapping mentioned previously. Instead

of complex systems with too many moving parts, Decision Manager’s engine may be deployed with

only Plain Old Java Objects (POJOs) and the common elements of a J2EE application.

BEHAVIOR-DRIVEN DEVELOPMENT IN AN ENTERPRISE
AGILE ENVIRONMENT

The simplified architectures in this paper allow the crafting of a knowledge engine within the domain

layer to speed development and implement object-oriented approaches. Since agile development

teams typically have only 5 to 9 members, there are usually multiple teams operating in parallel. The

delivery of each team’s component at the end of a potentially shippable increment (PSI) may by syn-

chronized through lightweight agile frameworks such as the scaled agile framework (SAFe).

If rules engine development is used as a kanban swimlane, a team devoted to its design, develop-

ment, and testing might be organized within the overall program. This team may operate autono-

mously and independently through the use of specification by example and BDD tools, such as

Cucumber or JBehave.

Instead of having to wait for components from other teams to exercise the knowledge sessions,

dependencies may be reduced and blockers or impediments may be avoided through the BDD

approach. Through the repository interface, test implementations of a repository can be written

to provide data to a knowledge session using the “given” statements that set up the context of a

scenario. “When” statements can be used to specify a rule flow group or agenda group to exercise

based on a certain event. This connects the BDD scenarios to the feature Decision Manager imple-

ments and helps manage large knowledge bases. “Then” statements can be implemented using

Drools queries to request information from the knowledge session and Assert calls to verify the

state of said information. An entire rules application can use the automated scenario to function

without the user interface or access to external data sources.

When this approach is employed, productivity increases through the elimination of dependencies.

When the rules engines are integrated with modules and components produced by other teams and,

after integration, the anticipated results are not achieved, then the BDD tests may be used to isolate

integration errors and quickly remedy defects at the time of integration.

Additionally, in agile environments, the BDD approach aligns stakeholders with the decision engine

far in advance of integration with other components. Errors in specification, improper representa-

tion of requirements, elaboration of outcomes, and comprehensive review of use cases may all occur

early in the application life cycle. Innovation often occurs through these review processes because

as initial functionality and use cases are demonstrated, customer requirements may be further

refined. Since the domain model is mapped through DDD, changes in the rules engine are easily

incorporated into the model so that affected components are also updated.

http://redhat.com

Copyright © 2018 Red Hat, Inc. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, and JBoss are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus
Torvalds in the U.S. and other countries.

facebook.com/redhatinc
@RedHat

linkedin.com/company/red-hat

NORTH AMERICA
1 888 REDHAT1

ABOUT RED HAT

Red Hat is the world’s leading provider of open source software solutions, using a community-
powered approach to provide reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat also offers award-winning support, training, and consulting
services. As a connective hub in a global network of enterprises, partners, and open source
communities, Red Hat helps create relevant, innovative technologies that liberate resources for
growth and prepare customers for the future of IT.

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

redhat.com
f14267_1018

CONCLUSION

Agile organizations must develop applications that yield high returns at a reduced cost. This

means these organizations must find ways to support more productive teams. Organizations

recognize that quality software has to be testable and supportable in enterprise-level produc-

tion environments. Success requires accurate, understandable requirements and an integrated

approach to quality assurance (QA).

Red Hat Consulting uses BDD and Decision Manager to improve our clients’ success rates. Our

technologies and methods allow companies to close the gap between business analysts (BAs),

developers, and QA analysts by having them work in close alignment. We help our clients take

advantage of the complementary skills found within cross-functional design-build-test teams.

Our results are high-quality applications that deliver business value quickly at reduced cost.

WHITEPAPER Behavior-driven development and decision management

http://facebook.com/redhatinc
https://twitter.com/redhatnews
http://linkedin.com/company/red-hat
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
http://redhat.com

