
REPORT

Open Source
Data Pipelines
for Intelligent
Applications
Kyle Bader, Sherard Griffin,
Pete Brey, Daniel Riek
& Nathan LeClaire

Compliments of

http://openshift.com/storage

Kyle Bader, Sherard Griffin, Pete Brey,
Daniel Riek, and Nathan LeClaire

Open Source Data Pipelines
for Intelligent Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07425-0

[LSI]

Open Source Data Pipelines for Intelligent Applications
by Kyle Bader, Sherard Griffin, Pete Brey, Daniel Riek, and Nathan LeClaire

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Colleen Lobner
Development Editor: Sarah Grey
Production Editor: Kristen Brown
Copyeditor: Arthur Johnson

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition
2020-03-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Open Source Data
Pipelines for Intelligent Applications, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. Introduction. 1
Evolution of the Data Analytics Infrastructure 2
Evolution of Scheduling 5
Bringing It All Together 8

2. A Platform for Intelligent Applications. 11
Defining Intelligent Applications 11
Intelligent Application Pipelines 15
Challenges of Using Traditional Infrastructure 18
The Hybrid and Multicloud Scenario 23

3. Object, Block, and Streaming Storage with Kubernetes. 27
Object Storage 27
Block Storage 31
Streaming Storage 33
Using Storage in Kubernetes 35
Summary 36

4. Platform Architecture. 37
Hardware and Machine Layers 37
Data and Software Layers 42
Summary 46

iii

5. Example Pipeline Architectures. 47
E-commerce: Product Recommendation 48
Payment Processing: Detecting Fraud 55
Site Reliability: Log Anomaly Detection 60
GPU Computing: Inference at the Edge 69

iv | Table of Contents

CHAPTER 1

Introduction

Every day, businesses around the world make decisions, such as
what they should stock in inventory, which items they should rec‐
ommend to their customers, when they should email prospects, and
more. At best, we guide these decisions with a careful process, ana‐
lyzing available information with rigor. At worst, we make these
decisions by striking out in the darkness with limited data, hoping
that reality will match up with our mental models.

We live in a time where being data driven is not only table stakes; it’s
the future upon which a competitive advantage is built. It’s no sur‐
prise, then, that we’re seeing a renaissance of methods for processing
and storing the ever-increasing amounts of information businesses
generate. In this report we’ll examine a number of aspects of run‐
ning data pipelines, and intelligent applications, with Kubernetes.
We’ll look at:

Chapter 1, Introduction
The history of open source data processing and the evolution of
container scheduling

Chapter 2, A Platform for Intelligent Applications
An overview of what intelligent applications are

Chapter 3, Object, Block, and Streaming Storage with Kubernetes
How we use storage with Kubernetes for effective intelligent
applications

Chapter 4, Platform Architecture
How we should structure our applications on Kubernetes

1

Chapter 5, Example Pipeline Architectures
Some examples, with concrete details, of deploying intelligent
applications on Kubernetes

In this introduction, we’ll take a look at where we’ve come from as
an industry so we can understand the landscape of the modern eco‐
system as well as where the future is headed. We’ll see how data ana‐
lytics infrastructure has evolved and how Kubernetes opens the
doors to declarative data infrastructure.

Evolution of the Data Analytics Infrastructure
In the early 2000s, as systems began emitting more and more data, it
became more difficult to process that data reliably. Working with
that much data on only one commodity computer was too slow, and
distributed processing was finicky. Tasks performed on generated
data, such as server access or search query logs, had to be split over
multiple machines to finish with reasonable speed, but this
approach introduced all sorts of complications. The logic of process‐
ing the data and of scheduling that processing was intermingled—so
people who needed to harness the power of a large cluster of
machines also had to worry about state coordination and resource
scheduling. A new way of processing this data in these periodic jobs
was needed.

Mapping and Reducing
Engineers at Google noticed that many large distributed jobs had
the same pattern: one phase to calculate keys based on underlying
data, and a second phase to aggregate the keys. They implemented
MapReduce, a system for describing these two-step jobs with a uni‐
fied paradigm. Programmers could simply outline the “map” and
“reduce” steps without having to coordinate the careful management
of parallelization and fault tolerance across the system. A surprising
number of desirable workloads could be described this way, such as:

Distributed Grep
Emit the log line itself if it follows a given pattern—or emit
nothing otherwise.

Indexing URL Popularity
Emit one <URL, 1> pair for each reference to an indexed URL
and then sum them.

2 | Chapter 1: Introduction

In-House Analytics
Mark each distinct URL of the app from access logs and then
sum them.

A groundbreaking paper by Jeffrey Dean and Sanjay Ghemawat of
Google put MapReduce on the map as a method for describing such
distributed workloads.

The MapReduce paradigm, which soon become popularized by the
Apache Hadoop open source project, gained momentum as pro‐
grammers were suddenly able to describe their multiple stages of
data transformations (often known as a data pipeline) using a com‐
mon workflow that freed them from managing distributed logic.
Hadoop’s distributed filesystem, HDFS, was minimal but effective in
distributing the inputs and outputs of the MapReduce jobs
(Figure 1-1). HDFS achieved the goals of the project—namely, to
run well on commodity hardware where failures were common and
to fit Hadoop’s unique filesystem needs. For instance, instead of
being flexible for general file read/write performance, HDFS optimi‐
zes for reading data out of files as fast as possible and tolerating
hardware failures. Accomplishing this required making some trade‐
offs, such as relaxing certain POSIX compatibility features.

Figure 1-1. Hadoop’s computation model; worker nodes map and
reduce in parallel to crunch data

Evolution of the Data Analytics Infrastructure | 3

https://oreil.ly/ZeG3u
https://oreil.ly/VBzt8

Hadoop gained huge popularity, and freshly minted startups clam‐
ored to commercialize this exciting new technology. They began
applying Hadoop to every use case under the sun, including some
that were not necessarily a good fit. As the old saying goes, when all
you have is a hammer, everything looks like a nail—and many work‐
loads looked like a Hadoop-shaped nail for a while. With Hadoop as
a building block, innovations built on top of it began to emerge,
along with improvements to its core technologies. One of the ways
this manifested was in systems such as Hive. Hive provided an SQL-
like interface on top of the Hadoop framework, democratizing dis‐
tributed processing for those already familiar with SQL but who
otherwise might not be up to the task of hand-crafting a MapReduce
job to access the results they were interested in (Figure 1-2).

Figure 1-2. Hive was one of several innovations allowing users to
access underlying Hadoop data more freely

YARN and Storage
YARN—short for “Yet Another Resource Negotiator”—was intro‐
duced in Hadoop 2.x as a new component powering some of
Hadoop’s decision making. The YARN documentation explains its
purpose:

4 | Chapter 1: Introduction

https://oreil.ly/4zGVc

The fundamental idea of YARN is to split up the functionalities of
resource management and job scheduling/monitoring into separate
daemons. The idea is to have a global ResourceManager (RM) and
per-application ApplicationMaster (AM).

But why bother? Before Hadoop 2.0, compute resource manage‐
ment, job scheduling, job tracking, and job execution were all tightly
coupled. The result was inflexible and had difficulty coping with the
scale required by web giants like Yahoo! and Facebook. It also made
building new tools on top more difficult. With YARN, job execution
and the management of resources are decoupled.

Lately, the ability to decouple scheduling and applications has
become even more accessible because of platforms like Kubernetes,
representing a new logical step in this journey. Kubernetes gives
users the ultimate freedom to run whichever applications best suit
their needs; they can build data pipelines using innumerable tech‐
nologies such as Spark, Presto, Kafka, NiFi, and more. While you do
indeed need to become a talented YAML wrangler to fully enjoy
Kubernetes, the abstractions and flexibility it provides once you are
fully ramped up is tremendous. Likewise, innovations in both cloud
and on-premises storage are shaking things up.

The storage needs of the modern era are multivariate and complex.
As new computation paradigms evolved, the rise of stable and
massive-scale storage solutions enabled those developing and oper‐
ating data pipelines to move with agility. We’ll look at various stor‐
age needs in Chapter 4.

Evolution of Scheduling
Resource negotiators for both small local computation (like your
CPU) and distributed computation (YARN’s ResourceManager)
have been the subject of research for decades. Just like they pio‐
neered MapReduce and similar technologies as they wrangled with
their data processing workloads, engineers at companies such as
Google also drove innovation in how to reliably support critical web
services at scale, and with minimal toil. Due to the immense scale of
the workloads and computational power required to run its produc‐
tion web services, Google could not lean on traditional virtualiza‐
tion. Mostly due to scale, that method of isolating computational
workloads would be too slow and expensive. The engineers at Goo‐
gle instead needed a solution that would allow them to isolate and

Evolution of Scheduling | 5

partition applications without the overhead of emulating a complete
operating system for each. This drove innovations in the Linux ker‐
nel that would provide the foundations of what we know as Linux
containers, popularized by technologies such as Docker and
Podman.

Deploying at Google Scale
The development of containerization at Google opened up two dis‐
tinct advantages for deploying production software. The first was
distribution: since each process bundled the related files and meta‐
data that it needed in order to run correctly, it could be migrated
between various servers and scaled up or down with ease. The other
was resource management: processes had clearly delineated bound‐
aries and scheduling constraints, thereby ensuring that spare com‐
puting resources could be used efficiently for spare work without
interfering with mission critical services such as search queries and
Gmail.

Scheduling Constraints
Running such applications co-resident on the same host introduced
a difficult dilemma. If each application were to run on its own dedi‐
cated machine, a significant amount of computing power would be
wasted if the machine were sized to accommodate peak traffic
demands. However, if a background job to process data were kicked
off on a node that was already busy during peak traffic, it could
easily cause chaos with mission-critical systems. Without the
enforcement of entitlements to specific allocations of memory, CPU,
and other resources, processes running on the same infrastructure
would inevitably step on each others’ toes and cause headaches for
the system administrators. The Linux kernel feature known as
cgroups (short for “control groups”) allowed administrators to
enforce such resource constraints in a particular way that made co-
residency of applications safer through containment and preemp‐
tion, enabling efficient bin packing of applications, reclaiming
trapped capacity and driving higher efficiencies (Figure 1-3).
Another kernel feature known as namespaces enabled each process
to have its own “view” of the world, so that system APIs such as the
network could be used without the usual challenges of running
applications co-resident with each other.

6 | Chapter 1: Introduction

Figure 1-3. Workload scheduling using containers

Container Accessibility and the Rise of Kubernetes
While the underlying features of containerization had been available
in the Linux kernel since the early 2000s, the technology was not
particularly accessible to most developers until Docker was released
to the public in 2013. Suddenly, just as MapReduce had become
available to everyone through open source implementations such as
Hadoop, building and running container images became a part of
every engineer’s toolset. This led Google to open-source a reboot of
their internal container management software. The reboot was
called Kubernetes, based on the Greek word for a helmsman of a
naval vessel. While systems such as Docker could build and run one
container at a time, Kubernetes could manage a whole fleet of con‐
tainers in a declarative way (Figure 1-4). With Kubernetes, you can
define the desired application or “stack” to the Kubernetes API, and
Kubernetes will reconcile the system’s actual state with the desired
new state. This includes creating cloud infrastructure such as load
balancers and block devices automatically for the new applications.

Evolution of Scheduling | 7

Figure 1-4. While Docker provides a set of imperative commands to
run containers on a single host, Kubernetes offers a declarative API
and can create your desired infrastructure across a cluster

Everyone Joins In on the Fun
Not long after Google open-sourced the Kubernetes project, engi‐
neers from companies such as Red Hat began contributing in the
open and improving the project for all to benefit. Red Hat quickly
became the number-two contributor to the project, and a large
movement in cloud-native infrastructure began to develop. The
industry began to rally around Kubernetes as a new general model
for treating a cluster as a computer. Some have even gone so far as to
claim that Kubernetes is the “distributed operating system” for the
modern data center, much like Linux is the open source beating
heart of the cloud.

Bringing It All Together
The democratized worlds of big data and warehouse-level comput‐
ing inevitably began to collide. As scheduling became more general-
purpose through projects such as Kubernetes, it found a natural
complement in engineers’ dissatisfaction with useful technologies
being barred admission by specialized schedulers like YARN. New
tools like PyTorch and TensorFlow began to proliferate, making it
easier for developers to build and deploy sophisticated machine
learning models. As Kubernetes assumed the role of declarative
infrastructure manager and workload supervisor, data processing
needed not be relegated to specialized silos of infrastructure.

8 | Chapter 1: Introduction

Instead, it could be combined to co-exist in the same infrastructure
supporting an organization’s other applications, maximizing their
often significant investment in infrastructure.

As the desire for new ways of creating, organizing, and administrat‐
ing data pipelines has grown, the new movement to accelerate pipe‐
lines with Kubernetes is booming. As you’ll see in the next section,
Kubernetes is enabling businesses to embrace intelligent applica‐
tions. New tools like Kubeflow and Open Data Hub will be integral
to guiding businesses’ decision making and managing the “digital
gold” of data.

Bringing It All Together | 9

https://www.kubeflow.org
https://opendatahub.io

CHAPTER 2

A Platform for Intelligent
Applications

Artificial intelligence is the new must-have for every organization—
or at least that’s what business leaders have been led to believe. Every
day we are flooded with stories about advancements in self-driving
cars, personal assistant devices, facial recognition technology, and
more. Businesses in all verticals want to take advantage of newly
accessible AI technologies, but few understand what exactly that
means or where to start. Even fewer businesses understand intelli‐
gent applications and their place in the AI story. In this chapter, we’ll
define the terms artificial intelligence and intelligent applications and
answer some commonly asked questions about them.

Defining Intelligent Applications
Sherard Griffin, one of the authors of this book, illustrates how clear
the power of AI is becoming to even the youngest users:

My 10-year-old son and I attended a conference for developers. As
part of the conference, he was interviewed by a journalist who
asked his thoughts on AI. After contemplating for a few seconds, he
responded that he believes AI will simultaneously be the savior and
destroyer of mankind. After a few curious looks from people
around the room, he then went on to clarify his thoughts by giving
examples of otherwise great AI technologies that exist today which
are on the verge of being misused. The first example that came to
his mind were virtual AI assistants, a recent addition to our
home. He said, “It can really help us do a lot of great things, but

11

[companies] can always listen to us and have access to our private
data.” He also explained how he feels it is our duty to be responsible
with the technology and data that we use for building artificial
intelligence.

I wasn’t surprised by his view of AI as something very promising
and powerful. After a few laughs, I remembered that I’ve been in
quite a few conversations where AI is talked about as if it’s a mythi‐
cal creature that can do wonders for a company. As long as you
have some data and some type of infrastructure, anything is possi‐
ble, right?

Here are some examples of the things the authors have seen or heard
about AI:

“We have massive amounts of data coming in and we can’t seem to
understand most of it. I know—let’s try AI.”

“Something weird is happening with our systems but I can’t find it
in the logs. I bet AI can find the problem.”

“Our sales team says the customers are happy but contracts keep
getting canceled. This sounds like something AI can figure out
for us.”

It’s true that organizations sometimes think of artificial intelligence
as a magic box that solves all problems. In reality, building success‐
ful AI applications that yield actionable results is often challenging
and complex. Teams must have the right infrastructure, data, soft‐
ware tools, and talent. Most important of all, they must have clearly
defined objectives for what AI is going to do to help their organiza‐
tion succeed.

What Is Artificial Intelligence?
Does everyone in the organization have the same definition of AI?
Does everyone understand the limitations of these technologies? At
Red Hat, we knew these questions had to be solved first before we
could begin starting our AI initiatives. We put a virtual team
together to decide on unifying company-wide definitions of AI,
machine learning, and deep learning. Here is what our team agreed
on:

Artificial Intelligence (AI)
Computers leveraging code to perform tasks.

12 | Chapter 2: A Platform for Intelligent Applications

Machine learning (ML)
Computers leveraging code to perform tasks without being
explicitly programmed.

Deep learning
Computers leveraging code to perform tasks without being
explicitly programmed and with the network adapting to new
data as it comes in.

With consensus on the definition of AI and its subsets, we were able
to create focus areas that were important to our company goals and
build initiatives around them, such as implementing AI models in
our products, using AI to enhance business processes, and building
tools that allow developers to use AI in their technologies. The foun‐
dation of all of these initiatives was the most important focus area:
our data strategy. We put a team in charge of defining and managing
the data strategy, and the outcome of that work was the genesis of
Open Data Hub. Open Data Hub is a Kubernetes-based open source
AI-as-a-service platform that helps organizations collect and derive
value from their data at scale while providing developers, engineers,
and data scientists flexible tools to leverage the data in intelligent
applications.

With a unified definition of AI, a data strategy, and the right tools,
all stakeholders in an organization are empowered to begin applying
AI to challenges, while being cognizant of limitations of the technol‐
ogies. Taking a practical view can help organizations navigate the
often confusing landscape more effectively. Next, let’s look at what it
means to build intelligent applications and why Kubernetes has
emerged as the platform of choice for these workloads.

What Are Intelligent Applications?
An intelligent application is any application that collects and applies
artificial intelligence and machine learning techniques to improve
fitness over time. To pull off the “intelligent” part, organizations
often need massive amounts of data, and this data needs to be
accessed and prepared as efficiently as possible. Without access to
the right prepared data, an AI initiative will be thwarted before it
starts.

This is where big data engineering, data science, and analytics
become critical. Combine these concepts with scalable platform
infrastructure and tools that enrich the application developer

Defining Intelligent Applications | 13

https://opendatahub.io

experience, and you have the key elements for creating intelligent
applications.

Pushing Boulders up Hills
What purpose do intelligent applications serve? If you’re familiar
with the story of Sisyphus, you’ll remember that the Greek gods
punished him for trying to cheat death by forcing him to roll a
boulder up a hill. When he reached the top, the boulder would come
crashing back down—he was doomed to repeat the same thing for
all of eternity.

So what does that have to do with intelligent applications? Every
organization, like Sisyphus, finds itself spending valuable time and
money over and over again on tasks with enough variance that they
require human input. The human element required prevents these
tasks from being scripted with basic rules-based approaches. If this
Sisyphean task were instead being done by an intelligent application,
it might roll the boulder up the hill, but it would also learn from var‐
iations in the process to adjust to dynamic factors. Then Sisyphus
himself could eventually focus on more important tasks, or whatever
punishment the gods gave him next.

Intelligent Applications for Logs
Let’s look at the use case of analyzing logs from complex build sys‐
tems. At Red Hat, we create and curate quite a bit of software. This
requires an extensive network of build systems that each generate
massive amounts of logs. Because of the spider web of dependencies,
any irregularity that occurs in upstream community projects may
not surface until further down in the build pipeline. If someone or
something could monitor the otherwise boring logs in real time,
perhaps anomalies could be caught in time and corrected before
they are incorporated into downstream product builds. This task
could be incredibly valuable, since Red Hat needs to be able to ship
new versions of software to production quickly, but giving it to a
single person or team to do manually would indeed be a Sisyphean
punishment.

We decided to address this problem using intelligent applications.
We used Kubernetes to build an application that ingests logs, scans
them for irregularities, and notifies responsible parties of potential
issues early. (We’ll discuss why Kubernetes was our platform of

14 | Chapter 2: A Platform for Intelligent Applications

choice in “Challenges of Using Traditional Infrastructure” on page
18.) We recognized the limitations of having humans doing this
tedious yet important task and saw an opportunity for intelligent
automation.

Let’s take a look at the pipeline for building such an application.

Intelligent Application Pipelines
If you’re building an intelligent application, you will need large
amounts of data in an optimized format for training models. To
store all of our unstructured information for AI workloads, we deci‐
ded to build a data lake using Ceph Object Storage. (Chapter 3 dives
more into which type of storage is ideal for different workloads and
how to organize your data efficiently to maximize performance.)

In most cases, data engineers work to clean, process, and enrich data
before data scientists can use it for purposes such as model training
and validation. In our experience, the size of the data needed to
train a model correlates to the algorithms being used and the com‐
plexity of the problem you’re trying to solve. More variations in
inputs, as you might expect, result in more accurate models.

With the system we built, there is no shortage of data available for
analysis because our internal systems generate hundreds of gigabytes
per day. Handling such quantities of data is no easy task. A good
strategy for efficiently storing and processing your data is instru‐
mental. You need the right infrastructure, compression, and encryp‐
tion algorithms to handle the massive volumes of data. If any aspect
of the system is insufficient, keeping up with the demands of users
and applications will be a significant challenge. Such a system to
transfer data across various locations, transformations, and data for‐
mats is often referred to as a pipeline (Figure 2-1).

Intelligent Application Pipelines | 15

http://ceph.io

Figure 2-1. An example intelligent application pipeline

Data Science Workflow
What does a data scientist’s workflow look like with such a pipeline?
Data scientists need tools that allow them to build out complex algo‐
rithms and perform advanced computations by exploring vast
amounts of data. Many of our own data scientists choose Apache
Spark for its flexibility in accessing data from many different sources
and for its highly scalable and performant distributed in-memory
processing.

Apache Spark’s integration with object stores, and in this case with
Ceph Object Storage, means that massive amounts of unstructured
data can be cataloged and queried in-situ, instead of rehydrating
data from another storage system. Once the data is readily accessi‐
ble, data scientists can build models using a rapidly evolving list of
toolkits such as TensorFlow, scikit-learn, R, and more. You can see
this architecture in Figure 2-2.

Figure 2-2. Exploring data using Jupyter, Spark, and Ceph

Often the data scientist will validate the model by running a series of
benchmarks to evaluate its accuracy. An underperforming model
may have its parameters tuned and retested until the results improve
to an acceptable level of quality, or more data may be needed to gen‐
erate “good” results.

16 | Chapter 2: A Platform for Intelligent Applications

Serving Trained Models
Simply preprocessing data and then training models on it isn’t suffi‐
cient—we also have to make these models available to applications.
This step—serving the model in an environment that can be used by
developers as they build their applications—is one of the biggest
hurdle for organizations to overcome. In fact, many data science ini‐
tiatives end completely at this stage, before they even spread their
wings. We recommend deploying the model as its own service run‐
ning in containers. (We’ll get into more detail on what that looks like
in Chapter 5.) This decouples the model from other services and
applications that leverage it and allows for independent life cycle
management.

When serving a model in a production environment, data scientists
must be able to version and sometimes roll back models with rela‐
tive ease—without help from application engineers—so that they
can maintain accurate models. They also need the flexibility of
updating their algorithms based on new training data or changes in
features. Kubernetes has a natural ability to scale in and scale out
container workloads efficiently using ReplicaSets and pod replica‐
tion strategies. As such, users are able to take advantage of multiver‐
sion model-serving engines and scaling with Kubernetes, and can
operate different versions (each as their own replica set) and use
Istio style A/B testing. Since it helps guarantee availability as
requests increase and also controls rolling out new code, Kubernetes
is a natural fit for data scientists needing to deploy models.

A Quick Glance at Architecture
Figure 2-3 shows an example data pipeline. In Step 1, Apache Kafka
is used as a message bus to ingest data from external systems for
processing. The Kafka consumer then takes the messages from a
Kafka topic (hopefully in batches) and makes a call to the Flask web
app serving the machine learning model (Step 2). The Flask web app
applies the machine learning model to predict output based on
unseen data and then stores the results in Ceph Object Storage (Step
3). In Step 4, Prometheus is used to gather metrics from the
machine learning model’s predictions.

Intelligent Application Pipelines | 17

Figure 2-3. Our trained models can be deployed as microservices

A site reliability engineer can use these performance metrics about
the number of errors, saturation, and total amount of work done by
the system to ameliorate system stability. In tandem, data scientists
can use metrics describing the performance of the model itself to
improve accuracy and decrease the number of problems caused by
anomalies. By splitting each component of the pipeline or overall
system into small pieces such as this example microservice, we can
limit the impact of any one change on the overall system and
improve them all piecemeal.

In Chapter 5 we’ll get into more detail on deploying similar use
cases on Kubernetes. Kubernetes addresses the unique concerns of
data scientists, site reliability engineers, and application developers
by easing the deployment of small services and leveraging modern
technologies to control rollout strategies. This leads to better intelli‐
gent applications for powering our business.

Challenges of Using Traditional Infrastructure
Cloud providers offer many resources for building intelligent appli‐
cations, but what about those among us who are still deploying on
physical machines on-premises? Bare metal server deployments,
which do not use virtualization, are great for eliminating the noisy
neighbor problem of shared resources, but there are significant limi‐
tations to consider. In this section, we’ll go over some of the most
common infrastructure issues and how Kubernetes can help resolve
them.

18 | Chapter 2: A Platform for Intelligent Applications

As you learned in Chapter 1, containers are a lightweight deploy‐
ment mechanism at the core of Kubernetes, and they provide you
with the ability to develop rapidly and update frequently. This speed
of innovation is critical for intelligent applications. Kubernetes is
perfect for orchestrating these updates because all major cloud pro‐
viders support it, and it can easily be deployed in on-premises infra‐
structure as well.

Let’s take a look at the specific challenges of traditional infrastruc‐
ture and walk through how Kubernetes solves them:

• What if we need periodic updates of the latest AI and machine
learning tools?

• What if we need to scale up or scale out?
• What if we need to make the most of our resources?
• What if our data is too sensitive for the cloud?
• What if cloud GPU computing is too expensive?
• What if we need to understand how models make decisions?
• What if we want to use multiple cloud vendors?

What if we need periodic updates of the latest AI and
machine learning tools?
Toolkits for building intelligent applications are evolving at a break‐
neck pace. Data scientists will need to rapidly increment software
versions to access new capabilities. This need poses a significant
challenge for traditional system deployments because they usually
require manual updates of software packages. Complex package
dependencies make it risky to manage the frequency of updates—
and the versions deployed on the server very rarely look the same as
the development environment in which the application was created.

With Kubernetes, container images can be updated to point to the
latest versions of toolkits with minimal effort. Given the ability to
test applications on a local machine in a similar environment to pro‐
duction, developers can ensure the new updates run smoothly. If a
problem does arise with a new image, the container image can be
reverted quickly.

Challenges of Using Traditional Infrastructure | 19

What if we need to scale up or scale out?
Using the conventional approach of deploying a single Linux host to
run your intelligent application means that you need to fully under‐
stand the types of workloads that will be running as well as antici‐
pate the amount of input and output data. If your workload
outgrows the resources of your server, a physical upgrade will be
required. You’ll then be stuck submitting a ticket to your IT depart‐
ment, waiting for it to work its way through the system, and incur‐
ring downtime when it is installed. Likewise, if you want a new
instance or instances to load-balance an existing application, you’ll
have a similar provisioning headache.

Just as virtual machine orchestration platforms make scaling up easy
for VMs, Kubernetes makes it easy for containers. With everything
running as a container, a constrained container can easily be
swapped out with a beefier one (as long as the underlying physical
hardware has enough resources). Scaling out is just as easy. New
containers can be added to a cluster with a quick revision of YAML,
a markup language used to define resources in a cluster. Kubernetes
even handles the networking for us, ensuring that our new container
is load-balanced automatically.

What if we need to make the most of our resources?
Virtual machines are isolated instances that contain an entire oper‐
ating system. If you have an intelligent application that needs to
scale out to thousands of virtual machines, that means the virtuali‐
zation overhead is multiplied a thousand times. If the stronger isola‐
tion of virtualization is not necessitated, this overhead amounts to a
tremendous amount of waste. Worse yet, if your application is a
light microservice, the amount of resources consumed by virtualiza‐
tion can outstrip those used for the microservice!

Kubernetes helps organizations circumvent this tax by gaining the
positive benefits of isolating workloads. Containers share the same
kernel, and you do not need to spin up a new VM for each running
instance of a server or job. You can therefore run much more on the
same hardware than you previously could.

20 | Chapter 2: A Platform for Intelligent Applications

What if our data is too sensitive for the cloud?
Not all data is meant for the cloud, and more importantly, not all
data is legally allowed to be stored in the cloud. Depending on the
industry and region, there can be strict government regulations pre‐
venting data from leaving its country of origin. Even if your business
does not find itself subject to such regulatory regimes, there are
times when storing massive amounts of sensitive personal data in a
cloud provider is not preferred.

The naive approach is to host the data in a local data center and use
the cloud services remotely. This creates two challenges. First, IT
departments must allow the cloud services access to secure internal
data centers with costly network pipes. Second, any data accessed by
the cloud services must be transferred over the network, leading to
suboptimal throughput and latency. Both issues are very difficult to
overcome and are often discouraged by IT security.

With Kubernetes, you can develop your applications once and port
them to any environment on any infrastructure (as seen in
Figure 2-4). Instead of bringing your data to where it’s needed, you
can invert the normal procedure by bringing the platform and appli‐
cation containers to the data.

Figure 2-4. Deploying the same model in the cloud and on-premises

Challenges of Using Traditional Infrastructure | 21

What if cloud GPU computing is too expensive?
Renting a single V100 GPU on one of the most popular cloud pro‐
viders could cost up to $3.06/hour as of November 2019. That’s
almost $27,000 a year! In contrast, a V100 GPU can be readily pur‐
chased online for less than $10,000. Using these in one’s own data
center could provide similar utility at a fraction of the cost.

If you want a more cost-effective model for running intelligent
applications that leverage specialized hardware such as GPUs,
Kubernetes can provide that flexibility. You can add new GPU-
enabled nodes to a cluster and share them among the data scientists
rather than renting expensive hardware in the cloud. GPU manufac‐
turers such as NVIDIA have collaborated with the Kubernetes com‐
munity to bring GPU acceleration to container workloads.

What if we need to understand how models
make decisions?
Every major cloud provider now has a set of cognitive services for
its users. These typically include a plethora of use cases such as nat‐
ural language processing (NLP), translation services, image/video
recognition, and more. For reasons such as legal audits and compli‐
ance, understanding how decisions are made is critical. Given the
black box nature of private cloud services, it is often very challeng‐
ing to answer those questions. Running our own applications on
Kubernetes can help provide an audit trail that can be followed
when we need to peel back the layers of how an intelligent applica‐
tion arrived at a particular decision so that we can remediate issues.

Running your cognitive services on Kubernetes means you have the
freedom to deploy and monitor your own intelligent applications.
With access to the source code, your engineers can learn how any
model makes its decisions and modify the code if necessary. Even
more critical is that you have access to the data used to train your
models and understand their outputs. This allows you to reproduce
your results and explain how decisions in the models were made.

What if we want to use multiple cloud vendors?
Cloud service providers don’t all offer the same cognitive services.
Likewise, their interfaces to communicate with each offering are dif‐
ferent. This could lead to vendor lock-in. If a vendor changes fea‐

22 | Chapter 2: A Platform for Intelligent Applications

https://oreil.ly/63S1-
https://oreil.ly/_yCOy

tures, pricing, or hardware options, moving to another cloud will be
costly and will require additional development work. Likewise, just
because you’re deploying on-premises doesn’t mean you don’t want
to use cloud services for some things. How, then, do you bridge that
gap with applications you have on-premises?

Developing on Kubernetes means you’re building applications and
APIs that are independent of the cloud in which they run. You are in
control of the APIs for your intelligent applications. There are a
growing number of open source projects, such as this text sentiment
classifier from IBM, that can be deployed to your Kubernetes cluster
as a microservice to help get you started quickly. This frees you from
having to rely on black box models from managed services in the
cloud.

The Hybrid and Multicloud Scenario
Intelligent applications are data hungry, and users must feed them
frequently. In a utopia for data scientists, all company data would
exist in the same infrastructure, but most enterprise organizations
don’t have all of their data in one place. Often this is by design—if
one cloud vendor or data center has problems, workloads can be
spun up in other environments to offset the issues. At other times,
highly dispersed data is due to organic growth in a company. For
instance, one set of developers may prefer to prototype and develop
in Azure, while another set prefers Amazon Web Services (AWS).
Yet another group may have been given a mandate that all applica‐
tions must be built internally due to regulatory compliance, ensur‐
ing that they cannot use any cloud.

If you already have data stored in multiple places, Kubernetes is a
great way to build applications that are portable across multiple data
centers. Since each container image is exactly the same and Kuber‐
netes manifests provide a reproducible specification for how the
applications are meant to be run, the same application can easily be
migrated to Kubernetes clusters running in distinct data centers.

In Figure 2-5, you can see an example of deploying across different
environments. Data scientists train models using sensitive data that
is not legally allowed to leave their private cloud. The model is then
tested as a microservice in the same private cloud and deployed to
production in the public cloud. Sensitive data never leaves the safety
of the company’s private infrastructure, but derivative results such as

The Hybrid and Multicloud Scenario | 23

https://oreil.ly/RbyPR
https://oreil.ly/RbyPR

classifiers can still be used to power applications running in the pub‐
lic cloud.

Figure 2-5. Deploying a model to multiple data centers

Kubernetes probably sounds great, but what if you already have
workloads running in the cloud or are using a cloud provider’s cog‐
nitive services? Does that mean you can’t use Kubernetes? Not at all.
You can still build the core parts of your application in Kubernetes
and take advantage of cloud services.

Kubernetes Is a Great Choice for Intelligent
Applications
Given what we’ve outlined here, you might be excited to get started
with Kubernetes. There are several open source projects to help you
jump-start Kubernetes data science initiatives. One of the most pop‐
ular ones is Kubeflow, a Kubernetes-based workflow for machine
learning. Kubeflow has an excellent community and includes tools
for experimentation, model serving, pipeline orchestration, and
more. Another project, Open Data Hub, is an open source AI-as-a-
service platform that includes tools to help with building an even
broader scope of intelligent applications than Kubeflow, including
application monitoring, data governance, and data ingestion. The
community’s primary goal is to provide a blueprint for how to build
an enterprise-grade platform for intelligent applications using popu‐
lar open source tools, including components of Kubeflow.

While there’s no one-size-fits-all solution for any problem, Kuber‐
netes is a great choice for running intelligent applications in both

24 | Chapter 2: A Platform for Intelligent Applications

https://www.kubeflow.org
https://opendatahub.io

the cloud and on-premises. At Red Hat, we look forward to seeing
Kubernetes continue to pay dividends on these use cases for our cus‐
tomers and for the open source community. The future looks bright
for intelligent applications.

The Hybrid and Multicloud Scenario | 25

CHAPTER 3

Object, Block, and Streaming
Storage with Kubernetes

How data is stored and processed will make a big difference to your
team’s quality of life. A well thought-out, optimized data pipeline
makes teams more productive. While Kubernetes makes deploying
new technologies easier, the storage systems we choose to rely on
still remain a crucial determinant of long-term success. With many
options available, it pays to be well informed on the trade-offs of
each type of storage and how best to deliver persistent data services
to a Kubernetes cluster in use.

In this chapter, we’ll explain what object, block, and streaming
storage are and how best to put them to use in data pipelines built
with Kubernetes. Chapters 4 and 5 will explain in more detail how
to tie these components together in practice with a Kubernetes
architecture.

Object Storage
Object storage is one of the most essential types of storage for intel‐
ligent and cloud native applications. Many use cases rely on a stor‐
age system that offers a stable API for storing and retrieving data
that can then be scaled massively to downstream clients who need
the data. As seen in Figure 3-1, object storage is deployed into
“buckets” (ourcompany-bucket in the diagram), which store objects
in a flat namespace, though separators in the key such as / can allow
end users to organize and interact with objects in a nested fashion.

27

Figure 3-1. Object storage is used for static files and read-intensive
workloads

Just as the filesystem on your laptop provides an API for reading
and writing to files, object storage provides the same features at a
massive scale over the network for a low cost. Common use cases
for object storage include:

• Serving static files such as audio, video, and pictures
• Keeping logs or other files around for a long time
• Powering storage for container image registries

Why use object storage instead of having a server somewhere that
users transfer files to and from? There are many reasons, such as
massive scalability, resilience, and a predictable API—and often fea‐
tures such as versioning, tagging, and encryption. Not only is object
storage designed to be reliable, but it also provides sophisticated
capabilities for auditing data access: a comprehensive trail of who
modified or accessed objects and when.

Object Storage for Intelligent Applications
Authors of intelligent applications are likely to lean heavily on object
storage to power their pipeline. A full data pipeline will have many
stages that use object storage as an interface for sourcing and sink‐
ing their inputs and outputs. Naturally, the data for training or

28 | Chapter 3: Object, Block, and Streaming Storage with Kubernetes

querying has to be stored somewhere in the first place, and object
storage is a perfect place to dump data in whatever format you cur‐
rently have it. Getting that data into a format that downstream con‐
sumers can understand can be taken care of later (and hopefully
automated as part of a more developed pipeline).

Flashy technologies such as TensorFlow, an open source framework
for building neural networks and other models, get a lot of attention
in the AI community, but the truth is that a big chunk of data sci‐
ence work is cleaning up data and making it usable in the first place.
Strings need to be munged, outliers need to be considered carefully,
structure has to be parsed out of messy data, and so on. Some of this
preprocessing work will be interactive and manual and might be a
good fit for using tools like Jupyter to shuffle data back and forth,
and Spark to perform iterative algorithms against an object data
store

Other use cases will be automated and might involve several depen‐
dent stages that each feed their inputs into the next one. For
instance, data might arrive in a format such as JSON, which is good
for humans but inefficient for use by computers. Projects such as
Apache Parquet serve as a much more efficient way to serialize data,
and one step in a pipeline might well be to convert incoming data to
this more efficient format to make consumption easier.

Another great example of this type of transformation stage is con‐
verting training data to a format such as TFRecord. TFRecord is a
simple binary format optimized for use with training data in Tensor‐
Flow. Since data will be loaded into memory for training, converting
the data to TFRecord, especially for use over the network, pays
dividends.

For both manual and automated workloads, object stores provide an
ideal format to ingress data from different sources. Once the data
has been preprocessed, the fun can start. You can load data into sys‐
tems such as Spark for querying, for instance. You can also train
models and then pickle them, allowing you to load a classifier object
that has been trained already during a future run of any program.

Object Storage | 29

https://www.tensorflow.org
https://oreil.ly/ZB4HG
https://jupyter.org
https://parquet.apache.org
https://oreil.ly/fC84f
https://oreil.ly/irgOg

A Note on Consistency
Consistency, the “C” in the famous CAP theorem, is an important
consideration for any user of an object storage system. For instance,
Ceph is a strongly consistent storage system—when you write some‐
thing to storage, there’s a strong guarantee that any subsequent read‐
ers will not get a stale read. Ceph is also the storage system that
provides file, block, and object storage to users, and this emphasis
on consistency is necessary to achieve all three.

Other systems, such as S3, provide “eventual consistency”—they will
eventually converge all readers to the same new value. In the
interim, readers might get stale reads. Depending on your use case, a
strongly consistent storage system like Ceph might well be a better
fit—after all, it can be frustrating to build pipelines where down‐
stream consumers need an accurate view of the output from their
upstream producer.

These critical features make massive-scale object storage “just work”
for every company with a credit card or some open source chops.
New features such as sophisticated access controls continue to
evolve on top of the existing offerings.

Shared APIs
The S3 storage service, created by AWS, has become a popular web
service for object storage and is considered a standard for many
object storage systems.

Ceph Object Storage, for example, incorporates S3 APIs, in addition
to other popular APIs, to enable portability of workloads across var‐
ious environments.

Just as Kubernetes enables portability for compute workloads, a
common object storage API means that migrating or deploying
applications across various environments becomes much easier.

Object storage is a key piece of the modern intelligent application.
There are even offerings to query the data directly on the object
storage of cloud providers without needing to spin up a server or a
container. The public clouds will run these queries for you. If you’re
thinking of building an intelligent application, become familiar and
fluent with the various capabilities and usage of object storage
systems.

30 | Chapter 3: Object, Block, and Streaming Storage with Kubernetes

https://oreil.ly/onj-t
https://oreil.ly/OQLbD
https://aws.amazon.com/s3
https://oreil.ly/ritr5

Block Storage
While block storage is not typically relevant for intelligent applica‐
tions, you will almost certainly encounter SQL and NoSQL data‐
bases providing structured data for applications running in
Kubernetes. Queries against this data are sometimes used by data
scientists to build relevant data sets, and thus it is useful to provide
an overview of the block protocol.

Block storage chops data into chunks of data and stores them as sep‐
arate pieces. Each block of data is given a unique identifier, which
allows a storage system to place the smaller pieces of data wherever
is most convenient.

Because block storage doesn’t rely on a single path to data, it can be
retrieved quickly. Each block lives on its own and can be partitioned
so it can be accessed in a different operating system, which gives the
user freedom to configure their data. It’s an efficient and reliable way
to store data and is easy to use and manage.

While block storage does have its merits for certain use cases, such
as databases, it is typically more expensive than object storage, mak‐
ing mass scalability prohibitive. It has limited capability to handle
metadata, which means it needs to be dealt with in the application
or database level, and is commonly mounted to the local filesystem
of a container or virtual machine (Figure 3-2).

Figure 3-2. Block storage is fixed-size, often networked storage moun‐
ted in for use by compute workloads

Block Storage | 31

https://oreil.ly/qIoQo

Common uses for block storage include:

• Persisting data when rolling stateful virtual machines or con‐
tainers such as databases

• Providing storage with special performance in cloud
applications

• Easily snapshotting and recovering filesystems

Offerings such as AWS Elastic Block Store give users a powerful
amount of flexibility in using various types of underlying storage for
their applications. Often, “block storage” implies cloud block storage
or a similar abstraction. If you are relying on storage, you need to be
prepared for the possibility of many kinds of failures in the storage
system. Block storage abstractions help you bring a degree of state‐
ful stability to applications that otherwise would be at risk of going
haywire because of these failures, which can even be unleashed
deliberately using systems like Netflix’s Chaos Monkey to ensure
system reliability. Cloud block storage opens up a variety of colorful
possibilities. Storage can be created, destroyed, and updated pro‐
grammatically. Such programmatic access not only makes managing
the storage easier for operators and for Kubernetes but also means
that it can be tracked and versioned in an infrastructure tool such as
Terraform.

Cloud block storage has a variety of options for configuration and
fine tuning—different backing storage types, such as fast solid-state
drives, are available to match differing use cases. Encrypted cloud
block storage lives independently of the lifetime of any particular
server, so it can be detached from servers and attached to new ones
at will, making upgrades, experimentation, and provisioning infra‐
structure easier. In cloud workloads using block storage, even if a
particular server’s functioning is trashed beyond repair, its underly‐
ing block storage can be disconnected and reconnected to a pristine
server, thus saving the day.

Cloud block storage can also easily be snapshotted and backed up
directly using the cloud provider’s APIs and tools—features that are
critical for the modern enterprise, where a loss of user or compli‐
ance data could be disastrous. These snapshotting features make
creating golden virtual machine images and protecting your organi‐
zation from data loss approachable, compared to running your own
storage hardware.

32 | Chapter 3: Object, Block, and Streaming Storage with Kubernetes

https://oreil.ly/I83dM
https://oreil.ly/37DHC
https://www.terraform.io

Block storage is often referenced in Kubernetes with the Persistent
Volume resource, “claimed” by pods for their own usage with a Per
sistentVolumeClaim, and sometimes created on the fly for apps
using dynamic volume provisioning. We’ll get more into details and
examples of this in practice in “Object Storage in Kubernetes” on
page 35.

Streaming Storage
While object and block storage are good building blocks for intelli‐
gent applications, sometimes higher-level abstractions are needed.
One need that has emerged is dealing with streams—the volumi‐
nous data points that are constantly streaming into our systems.
While it’s great that systems like Hadoop can do large-scale compu‐
tation across existing data, multiple pipeline steps take a while to
generate results, and sometimes you can’t wait.

Figure 3-3. Streaming storage is used for real-time data processing
workloads

Instead, you might need to be able to get answers from a streaming
storage engine on the fly. Streaming storage systems can transform,
filter, and query data as it’s coming in without needing any inter‐

Streaming Storage | 33

https://oreil.ly/J8eHp

mediate steps (Figure 3-3). That can help you build resilient systems
that answer questions in real time. Systems such as Apache Flink,
Kafka Stream, and Spark Streaming are examples of open source
streaming storage.

Common uses for streaming storage include:

• Rapid access to data without the need for preprocessing
• Performing transforms on data at the point of ingest
• Guaranteeing that modification of streaming events happens

exactly once

Streaming Storage Resiliency
Most businesses are not direct experts on distributed systems nor
storage—they know their customers, their employees, and their
market. It’s good luck, then, that the particular sophistication
required for effective streaming storage lets these businesses take
advantage of the hard-won knowledge of hundreds of experts and
open source contributors.

Instead of writing their own fault tolerance layer(s), they can instead
more aggressively pursue business goals. Streaming allows users to
perform otherwise complicated queries and transforms without hav‐
ing to worry about things like temporary node failure or a data
transform getting applied more than once, causing incorrect results.

Processing Data at High Speed
In some cases, waiting a while to run analysis on your incoming
data is just fine. Many use cases are not urgent and can wait
patiently for the next hourly run of the cron job. Increasingly, how‐
ever, businesses need to analyze large quantities of data, such as
product recommendations for customers on an e-commerce web‐
site, in real time or close to it.

It’s urgent in recommending products that customers receive the
absolute best suggestions possible to increase revenue, and you
might want a variety of factors to influence which things you recom‐
mend to them, such as what they have previously clicked on in their
current session, and which products they bought recently, which
items similar users have bought.

34 | Chapter 3: Object, Block, and Streaming Storage with Kubernetes

https://flink.apache.org
https://oreil.ly/aH4hi
https://oreil.ly/m2G4G

Streaming storage is perfect for these types of use cases due to its
ability to compute large workloads in near real time. In Chapter 5,
we’ll take a more detailed look at producing recommendations in
real time for users, including using Spark Streaming.

Using Storage in Kubernetes
Let’s take a brief look at integrating the various types of storage with
Kubernetes.

Object Storage in Kubernetes
Users of object storage in Kubernetes will have two primary con‐
cerns. One is ensuring an object store is available in the first place.
The other is ensuring that clients have the correct permissions for
bucket access.

In the case of the cloud, the first concern is taken care of for you, as
every major cloud provider has some type of object storage system
available. If running on-premises, a system such as Ceph can be
deployed on top of Kubernetes. You can see some examples of how
to deploy Ceph on Kubernetes in Ceph’s documentation. Following
the instructions there ensures that Ceph block devices are available
for creation as a dynamic volume (due to the creation of the ceph-
rbd StorageClass). This also installs the Ceph Object Storage Dae‐
mon, ensuring that Ceph Object Storage is available.

The permissions concern is usually addressed by using Kubernetes
Secrets. Kubernetes Secrets allow administrators to store values such
as object storage access keys in Kubernetes. These secrets are later
injected into pods as environment variables or readable files. Secrets
can be encrypted at rest to ensure that only the proper consumers
can decrypt and use them.

Block Storage in Kubernetes
Block storage in Kubernetes, as noted previously, can usually be
accessed through the use of Kubernetes Volumes. Kubernetes out of
the box supports a huge array of different volume options, including
Network File System (NFS), local volumes circumventing the lay‐
ered container filesystem, cloud provider volumes such as Elastic
Block Storage, and more. Thanks to the magic of open source,
there’s a good likelihood that if you’re using a popular platform,

Using Storage in Kubernetes | 35

https://oreil.ly/rENxY
https://oreil.ly/g6Xim
https://oreil.ly/g6Xim
https://oreil.ly/iAGqo
https://oreil.ly/iAGqo
https://oreil.ly/fpkAO

support for accessing block storage there has an integration written
for it already.

A Kubernetes PersistentVolume using this block storage can either
exist already or be provisioned dynamically by Kubernetes as
needed. The former might be a good fit for a team that knows its
storage needs well ahead of time. Such a team might mandate that
infrastructure be created in a declarative tool like Terraform.
Administrators would provision the volumes themselves ahead of
time, manage their life cycle using direct tooling instead of through
Kubernetes, and grant Kubernetes pods access to them using a
PersistentVolumeClaim.

Dynamic volume provisioning, on the other hand, allows Kuber‐
netes to take the wheel and create devices for volumes as they are
needed. This could be a better fit for a team that isn’t quite sure what
its storage and volume requirements will look like ahead of time, or
a team that wants to enable easy provisioning of such resources for
experimentation. In this model, any user with the correct access to
the Kubernetes cluster could provision storage without needing to
think about the underlying APIs too much.

Streaming Storage in Kubernetes
Streaming storage in Kubernetes will likely be utilized as an applica‐
tion deployed on top of Kubernetes. In Chapter 5, we’ll see the con‐
cepts to build out such a system in practice. For directly stateful
applications such as Kafka, users should make use of Kubernetes
StatefulSets as well as building on top of a flexible underlying block
storage layer, if offered.

Summary
This tour of storage should help set you up to understand the con‐
cepts for pipeline architecture and practical examples we’ll cover in
the next two chapters. As you can see, there’s a lot of detail to take in
when it comes to storage, but an effective understanding of what’s
available will help your team achieve its goals and avoid pitfalls.
Kubernetes lets you experiment with many different storage offer‐
ings so you can find the right fit.

36 | Chapter 3: Object, Block, and Streaming Storage with Kubernetes

https://oreil.ly/9JvzH

CHAPTER 4

Platform Architecture

This chapter will dive deeper into the details of what it means to
build out a platform architecture that enables organizations to create
applications, run them in an optimized infrastructure, and effi‐
ciently manage application life cycles. For data pipelines, this
includes ingestion, storage, processing, and monitoring services on
Kubernetes.

In this chapter we’ll cover the container orchestration, software, and
hardware layers needed to create a complete platform that elimi‐
nates data silos and enables workflows. It will serve as a general
architecture overview. Chapter 5 will cover specific examples that
would be implemented on such an architecture and how they might
be deployed.

Hardware and Machine Layers
Figure 4-1 shows the architecture for OpenShift, an enterprise
Kubernetes distribution. We won’t go into detail about all of the lay‐
ers shown in this diagram—detailed information can be found in
the OpenShift documentation. We will use the OpenShift architec‐
ture to highlight some key Kubernetes layers that play a critical role
in the platform architecture for data pipelines.

37

https://docs.openshift.com

Figure 4-1. OpenShift architecture

Hardware
Layer 1 describes the type of hardware in which Kubernetes can be
deployed. If you have an on-premise data center, this would be your
bare metal hardware or virtual servers. If you’re deploying to the
public or private cloud, you may choose AWS EC2 instances, Azure
Virtual Machines, or other options.

One benefit of Kubernetes is the ease with which it allows you to
combine hardware types. In our internal Red Hat data center, we
run our on-premises workloads on a mixture of bare metal nodes
and virtual servers in one Kubernetes cluster (see Figure 4-2). This
allows more flexibility for processes that demand lower latency per‐
formance optimizations such as Elasticsearch on bare metal nodes
that are backed by NVMe storage.

38 | Chapter 4: Platform Architecture

https://oreil.ly/CxsA7

Figure 4-2. Mixing bare metal and virtual servers in Kubernetes

In Figure 4-2, hot data contains the most recent indexes, which
demand high read and write throughputs due to the frequency of
data coming in and of users querying the results. An example of hot
data would be the last seven days of systems log data. Warm data
might be systems logs older than seven days that are read-only and
only occasionally queried. In this situation, spinning disks with
higher latency and cheaper costs are sufficient.

Physical and Virtual Machines
Let’s look next at the node layer (layer 2 in Figure 4-1. In Kuber‐
netes, physical and virtual machines are mapped to nodes
(Figure 4-3). In most instances, each node contains many pods that
are each running specific container applications. For example, a sin‐
gle node can have a mashup of pods running Kafka brokers, Flask
web applications, and application microservices.

Figure 4-3. Running multiple types of apps on a single node

Hardware and Machine Layers | 39

You can let the Kubernetes native scheduler take care of prioritizing
the node in which an application should reside, or you can create a
custom scheduler. (If you want to know about Kubernetes schedu‐
lers, you can learn more in the Kubernetes documentation.) We’ll
expand this layer a bit more to show how you can deploy applica‐
tions and microservices to create a data processing pipeline.

Persistent Storage
Depending on the application you’re running in a pod, you may
need persistent storage. If you have a stateless application or model
being served as a microservice, more than likely persistent storage
isn’t required. If you are running a database or a message bus or
simply need workspace for an interactive online workbench, then
layer 3 (fee Figure 4-1) is required. Each container in a pod can have
one or more persistent storage volumes attached to it (see
Figure 4-4). In the case of a database, you might have one for log
files, another for temporary disk space, and yet another for the
actual database data.

Figure 4-4. Persistent storage example for pods

As we discussed in Chapter 3, picking the right storage for your
workloads can be very important. With Elasticsearch, it was critical
that we deployed hot data to NVMe-backed nodes because of the
extremely high volumes of reads and writes that are required.
Slower disks would cause significant bottlenecks in performance
and eventually lead to the Elasticsearch application nodes losing
data due to lack of throughput (which we experienced firsthand).

40 | Chapter 4: Platform Architecture

https://oreil.ly/4YDb8

Your typical web application PostgreSQL database doesn’t need as
much low-latency storage, so regular spinning disk storage might be
fine. In Kubernetes, you can mix and match storage classes and
request which one to use as part of the deployment configuration for
applications.

Networking
Last, we have layers 4 and 5 in Figure 4-1, the routing (networking)
and service layers (see Figure 4-5). These layers enable access to the
applications running on the pods to external systems. The service
layer provides load balancing across replicated pods in an applica‐
tion deployment. The routing layer gives developers the option to
expose IP addresses to external clients, which is useful if you have a
user interface or REST API endpoint that needs to be accessible to
the outside world.

Figure 4-5. Networking and load balancing

If you want to learn more about Kubernetes architecture in general,
visit Kubernetes Concepts. A deeper dive into OpenShift’s architec‐
ture can be found here.

Hardware and Machine Layers | 41

https://oreil.ly/bWhlY
https://oreil.ly/DiwIx

Data and Software Layers
Now that you know a bit more about the Kubernetes platform archi‐
tecture, let’s get into what it means for data. A good platform archi‐
tecture should remove barriers to processing data efficiently. Data
engineers need an environment that scales to handle the vast
amounts of information flowing through their systems. Many intel‐
ligent applications are built with machine learning models that
require low-latency access to data even as volumes grow to massive
scales.

Hadoop Lambda Architecture
One of the more popular pipelines for low-latency processing of big
data stores is the lambda architecture. With the increased popularity
of streaming data, IoT devices, system logs, multiple data
warehouses, and unstructured data lakes across organizations, new
challenges have surfaced for keeping up with demands for analyzing
so much information.

What if we wanted to analyze the sentiment of incoming tweets
from a live event on Twitter? A first attempt at building an intelli‐
gent application for this might be a batch job that runs nightly. But
what if key business decisions need to be made in minutes instead of
days in order to react quickly during the event? Even if your nightly
job can keep up as the volume of tweets increases over time, it still
isn’t capable of reacting in minutes.

With a lambda architecture, engineers can design applications that
not only can react to incoming streams of data in real time but also
can gain additional insights by running more detailed data process‐
ing in batch periodically. Various Hadoop distributions have become
a fixture in many data centers because of their flexibility in provid‐
ing such capabilities. If you were to use Hadoop to deploy a lambda
architecture for sentiment analysis detection, it might look some‐
thing like Figure 4-6.

In the Hadoop lambda architecture, applications are typically
deployed on physical or virtual machines. Kafka and Spark Stream‐
ing are used to process tweets and analyze sentiments in real time.
The results are then sent to an external system where actions can be

42 | Chapter 4: Platform Architecture

taken immediately. In this example, an Apache Cassandra database
stores the results and is queried in real time.

Figure 4-6. Lambda architecture for Twitter sentiment analysis using
Hadoop

The batch pipeline of the architecture is used to train the sentiment
analysis model periodically as new data comes in and to validate the
changes against a set of known data points. This helps to ensure that
the model maintains accuracy over time. The new model is then re-
deployed to the real-time pipeline, which is a Spark Streaming appli‐
cation in this case.

Now let’s see what this same architecture looks like with Kubernetes.

Kubernetes Lambda Architecture
On the surface, these two implementations look very similar (see
Figure 4-7), and that’s a good thing. You get all the benefits of a
lambda architecture with Kubernetes, just as you could if you ran
these workloads on Hadoop in the public cloud or onto your own
data center. Additionally, you get the benefit of Kubernetes orches‐
trating your container workloads.

One change from our two lambda example implementations is that
an object store is used to collect data instead of HDFS. This allows
for separating storage from compute in order to scale out the system
hardware independently based on demand. For example, if you need
more nodes due to increased traffic in Kafka, you can scale out

Data and Software Layers | 43

without impacting where the actual data might be stored. Another
change is using containerized Kubernetes pods. This results in
resources of the various services being managed and allocated on-
demand both for real-time and batch pipelines.

Figure 4-7. Lambda architecture for Twitter sentiment analysis using
Kubernetes

Finally, since Kubernetes has orchestration built into it, we can use a
cron job for simple model training instead of a workflow scheduler
such as Apache Oozie. Here is an example of what the YAML defini‐
tion for the training job might look like:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: sentiment-analysis-train
spec:
 schedule: "0 22 * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: sentiment-analysis-train
 image: sentiment-analysis-train
 env:
 - name: MODEL_NAME
 value: "${MODEL_NAME}"
 - name: MODEL_VERSION
 value: "${MODEL_VERSION}"
 - name: NUM_STEPS

44 | Chapter 4: Platform Architecture

 value: "${NUM_STEPS}"
 restartPolicy: OnFailure
parameters:
- name: MODEL_NAME
 description: Name of the model to be trained
 value: SentimentAnalysis
- name: MODEL_VERSION
 description: Version of the model to be trained
 value: "1"
- name: NUM_STEPS
 description: Number of training steps
 value: "500"

For more information on CronJob objects, visit the documentation.

Each part of the pipeline is also deployed as a microservice. This
includes the Kafka cluster, object store, Spark MLlib, Spark Stream‐
ing application, and Cassandra cluster. Peeking into the deployed
pods on the nodes may reveal a workload orchestration similar to
Figure 4-8.

Figure 4-8. Example pod distrubution on Kubernetes

In a production Kubernetes cluster where performance is critically
important, having your Kafka pods on the same node as the object
store pods could create CPU or memory resource contentions
during high volume workloads. To maximize the usage of your

Data and Software Layers | 45

https://oreil.ly/S78RD

nodes and minimize contention with applications of drastically dif‐
ferent usage patterns, Kubernetes features such as nodeSelector and
affinity and anti-affinity rules can be used to ensure only certain
workloads are deployed to specific nodes indicated by labels. A bet‐
ter, more scalable orchestration might look like Figure 4-9.

Figure 4-9. Assigning pods to nodes

You can read more about this in the documentation on pod
assignment.

Summary
Not every architecture will look exactly the same, but some useful
and reusable patterns will emerge in many places that look quite
similar to one another. Some of the suggestions here should help
you structure your architecture properly. If you have to make
changes as you go, don’t sweat it—one of the greatest advantages of
deploying with Kubernetes is its flexibility.

In Chapter 5, we’ll take a look at some specific examples that build
on these architecture concepts to power intelligent applications.

46 | Chapter 4: Platform Architecture

https://oreil.ly/WuV2u
https://oreil.ly/WuV2u

CHAPTER 5

Example Pipeline Architectures

Let’s take a look at some example architectures that illustrate con‐
cepts presented here, including:

• Product recommendations using Spark, including some resour‐
ces to investigate for real-time recommendations with Spark
Streaming

• Payment processing using Python’s Flask and scikit-learn to
detect fraud and other financial crimes

• A site reliability use case analyzing log data for anomalies using
Elasticsearch, Logstash, and Kibana

• Inference at the edge using classifiers taking advantage of special
Nvidia hardware at embedded locations for computer vision

With the examples outlined here, we will go over a few aspects. First,
the use case: what problem are you trying to solve? As for the gen‐
eral architecture, how you will structure the various pieces of the
data platform to achieve the desired end result? Last, we will look at
concrete ideas for implementing the solution in Kubernetes.

Sample code and Kubernetes resource definitions (in YAML) have
been provided to help guide implementers in the correct direction.

47

E-commerce: Product Recommendation
In e-commerce, recommendations are one of the most reliable ways
for retailers to increase revenue. We can suggest items to users that
they might buy based on data that we’ve observed in the past about
their own behavior or the behavior of others. For instance, we can
use collaborative filtering to recommend products to users based on
the items that profiles similar to the user in question liked.

Normal batch processing using a system like Hadoop is one possible
solution to this, but we could also use Spark, a unified analytics
engine for large-scale data processing. Spark processes data in-
memory and achieves high performance using a variety of optimiza‐
tions. Spark supports a variety of client bindings in various
languages, and data scientists can easily connect and tinker with
their data embedded on a Spark cluster using tools like Jupyter.
Spark also has support for streaming analytics; as noted in Chapter 4,
this can help open up a variety of use cases that allow our intelligent
applications to react to things more quickly than traditional batch
processing. For instance, Netflix uses Spark Streaming to recom‐
mend content to users in near real time and to generate custom title
screens that the model suspects will convince users to play a given
piece of content.

This video presentation from Red Hat engineer Rui Vieira goes into
some of the specific mathematical details of implementing least
mean squares for collaborative filtering with Spark Streaming. Here,
we’ll look at how to implement such a system, including how you
might want to structure a Spark deployment on Kubernetes.

Implementation
Our implementation will rely on Ceph Object Storage to retain
information that will later be used for making predictions, on Spark
Streaming for the predictions themselves, and on a Spring Boot app
to relay these predictions to and from the user-facing front end
(Figure 5-1).

48 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/0KHQk
https://spark.apache.org
https://oreil.ly/z3Xyc
https://youtu.be/zzdx1gSZrhg

Figure 5-1. Spark and Spark Streaming can recommend items to users,
based, for instance, on things that have happened recently

In normal (nonstreaming) Spark, we could use Spark’s machine
learning library (MLib) to train and use an alternating mean squares
(AMS) model from data already stored in an S3-compatible object
store, as in the following example based on Spark’s documentation:

import java.io.Serializable;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.recommendation.ALS;
import org.apache.spark.ml.recommendation.ALSModel;

public static class Rating implements Serializable {
 private int userId;
 private int productId;
 private float rating;
 private long timestamp;

 public Rating() {}

 public Rating(
 int userId,
 int productId,
 float rating,
 long timestamp
) {
 this.userId = userId;
 this.productId = productId;
 this.rating = rating;
 this.timestamp = timestamp;
 }

E-commerce: Product Recommendation | 49

https://oreil.ly/Ef5L_
https://oreil.ly/Ef5L_

 public int getUserId() {
 return userId;
 }

 public int getProductId() {
 return productId;
 }

 public float getRating() {
 return rating;
 }

 public long getTimestamp() {
 return timestamp;
 }

 public static Rating parseRating(String str) {
 String[] fields = str.split("::");
 if (fields.length != 4) {
 throw new
 IllegalArgumentException("Each line must contain 4 fields");
 }
 int userId = Integer.parseInt(fields[0]);
 int productId = Integer.parseInt(fields[1]);
 float rating = Float.parseFloat(fields[2]);
 long timestamp = Long.parseLong(fields[3]);
 return new Rating(userId, productId, rating, timestamp);
 }
}

JavaRDD<Rating> ratingsRDD = spark
 .read()
 .textFile("s3a://ourco-product-recs/latest.txt")
 .javaRDD()
 .map(Rating::parseRating);

Dataset<Row> ratings =
 spark.createDataFrame(ratingsRDD, Rating.class);
Dataset<Row>[] splits =
 ratings.randomSplit(new double[]{0.8, 0.2});
Dataset<Row> training = splits[0];

ALS als = new ALS()
 .setMaxIter(5)
 .setRegParam(0.01)
 .setUserCol("userId")
 .setItemCol("productId")
 .setRatingCol("rating");
ALSModel model = als.fit(training);

50 | Chapter 5: Example Pipeline Architectures

model.setColdStartStrategy("drop");

final int NUM_RECOMMENDATIONS = 5;
Dataset<Row> userRecs = model.recommendForUserSubset(
 activelyShoppingUsers,
 NUM_RECOMMENDATIONS
);

Note the use of s3a:// protocol—this signals to Spark that it
should load an object directly from an object store rather than
from the local filesystem.

We split the training data so we can test our model on data not
included in the original training data once it’s finished.

This will drop any rows in the dataframe that contain unhelpful
NaN values.

activelyShoppingUsers is a Spark Dataset<Row> object (whose
creation is left out for brevity) representing the subset of users
who are currently on the site and hence that we want to produce
predictions for.

Spark’s ALSModel class’s recommendForUserSubset method produces
a Dataset<Row> describing the top production recommendations
for each user. We don’t have to stop there. We can also implement a
system using a streaming-based algorithm such as the one in this
article from Rui Vieira, who goes into fantastic detail about the math
behind it. Not only could we use new product recommendations
quickly after they come in, but we could also consider incorporating
other types of data, such as what the user has viewed recently, as fac‐
tors for our model.

For those interested in learning more or implementing such a
model, Project Jiminy is worth a look. Project Jiminy is a ready-to-
deploy solution for product recommendations that can run on
OpenShift. It has comprehensive considerations for a production
solution, including serving the resulting predictor(s). In Figure 5-2,
“Analytics” refers to the backing Spark cluster.

E-commerce: Product Recommendation | 51

https://oreil.ly/BlNcP
https://oreil.ly/BlNcP
https://oreil.ly/3NdYk

Figure 5-2. Architecture of Project Jiminy; various components such as
the modeler and predictor are split into multiple microservices with
REST endpoints

Kubernetes Ideas
We could structure a Spark cluster on Kubernetes as:

• A Spark master Deployment to manage the worker nodes
• A Spark worker Deployment for replicating worker nodes so we

can have as many workers as we need
• A Service exposing the Spark master for the workers to

connect to

Since Spark runs in-memory, we don’t need to concern ourselves
with using a StatefulSet, as data will be loaded into the cluster as
needed. This can come from a variety of sources such as object stor‐
age, as demonstrated above.

The deployment for the Spark master would look like this. When
the pod starts up, we kick things off by writing the proper hostname
to /etc/hosts and invoking /opt/spark/bin/spark-class

org.apache.spark.deploy.master.Master:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: spark
 component: master
 team: datascience
 name: spark-master
spec:

52 | Chapter 5: Example Pipeline Architectures

 selector:
 matchLabels:
 component: master
 template:
 metadata:
 labels:
 app: spark
 component: master
 spec:
 containers:
 - args:
 - echo $(hostname -i) spark-master >> /etc/hosts;
 /opt/spark/bin/spark-class
 org.apache.spark.deploy.master.Master
 command:
 - /bin/sh
 - -c
 env:
 - name: SPARK_DAEMON_MEMORY
 value: 1g
 - name: SPARK_MASTER_HOST
 value: spark-master
 - name: SPARK_MASTER_PORT
 value: "7077"
 - name: SPARK_MASTER_WEBUI_PORT
 value: "8080"
 image: k8s.gcr.io/spark:1.5.1_v3
 name: spark-master
 ports:
 - containerPort: 7077
 protocol: TCP
 - containerPort: 8080
 protocol: TCP
 resources:
 requests:
 cpu: 100m
 memory: 512Mi

To expose this master internally to the Kubernetes cluster, we can
create a Kubernetes Service for it. Once the Service is present, and
assuming a proper Kubernetes DNS setup, we can access it at any
time at the URI spark-master:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: spark
 component: master
 name: spark-master
spec:

E-commerce: Product Recommendation | 53

https://oreil.ly/a5Q0k

 ports:
 - port: 7077
 protocol: TCP
 targetPort: 7077
 selector:
 component: spark-master
 type: ClusterIP

With that set up, we can use a Deployment that will create an arbi‐
trary number of Spark worker pods connected to the master:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 component: worker
 release: sparky
 team: datascience
 name: spark-worker
spec:
 replicas: 3
 selector:
 matchLabels:
 component: worker
 template:
 metadata:
 labels:
 component: worker
 spec:
 containers:
 - command:
 - /opt/spark/bin/spark-class
 - org.apache.spark.deploy.worker.Worker
 - spark://spark-master:7077
 env:
 - name: SPARK_DAEMON_MEMORY
 value: 1g
 - name: SPARK_WORKER_MEMORY
 value: 1g
 - name: SPARK_WORKER_WEBUI_PORT
 value: "8080"
 image: k8s.gcr.io/spark:1.5.1_v3
 imagePullPolicy: IfNotPresent
 name: sparky-worker
 ports:
 - containerPort: 8081
 protocol: TCP
 resources:
 requests:
 cpu: 100m
 memory: 512Mi

54 | Chapter 5: Example Pipeline Architectures

The replicas key lets us define how many copies of the Spark
workers pod we will deploy. If we need more Spark workers, we
can edit the manifest to increase this value and run kubectl
apply on the cluster again.

The worker connects to the created spark-master service using
the spark:// protocol.

We can check the status of our deployed cluster using the Spark
built-in dashboard (Figure 5-3).

Figure 5-3. Once our Spark cluster is up and running, we can check the
dashboard to see what’s going on

Kubernetes can support all sorts of interesting Spark use cases—for
example we could use Horizontal Pod Autoscaling to add new work‐
ers as the cluster begins consuming too much CPU. We could also
deploy Spark clients such as Zeppelin and Jupyter to connect and
start interacting with the Spark cluster.

Payment Processing: Detecting Fraud
Let’s look at a Flask app serving a scikit-learn model that detects
whether or not a given transaction is fraud. Flask is a Python micro-
framework that makes building out small APIs and web apps
refreshingly simple. New data about fraud will be coming in regu‐
larly, so we need to continuously retrain our classifier. We might also
want the option to specify which version of the classifier should be
used in production when we deploy the service. Kubernetes can help
us address these needs and more, and we will look at some ideas for
how to structure our deployment on it.

Payment Processing: Detecting Fraud | 55

https://oreil.ly/ytm19
https://zeppelin.apache.org
https://jupyter.org

Implementation
As new training for classifiers happens, new versions of the classifi‐
ers will be serialized and stored in an object store such as AWS S3.
Our Flask app will then download serialized scikit-learn models
when it starts up. This service could then be exposed to clients in the
cluster, or to the outside world, using a Kubernetes Service. This is
illustrated in Figure 5-4.

Figure 5-4. A Python Flask app can download models trained by a
cron job so it can classify fraud

56 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/WPwpd

Random forests, which are available out of the box in the Python
library scikit-learn, are a good fit for many machine learning use
cases. In this example, the model is pretrained in the background
using scikit-learn, and the saved result is pushed to S3. When the
application starts up, it downloads the model from S3 and loads it
into memory as a Python object. Code for the API would be along
these lines:

import tempfile
import boto3
import joblib
import os
from flask import Flask, escape, request, jsonify

clf = None
with tempfile.TemporaryFile() as fp:
 s3_resource.download_fileobj(
 Fileobj=fp,
 Bucket='myco-ff-clf',
 Key=f'{os.getenv('FF_CLF_VERSION')}.pkl',
)
 fp.seek(0)
 clf = joblib.load(fp)

api = Flask(__name__)

@api.route('/healthz')
def alive():
 return 'Healthy'

@api.route('/classify')
def classify():
 # Data is passed to the API as features in the query string,
 # like so:
 #
 # GET /classify?f1=0.3&f2=0.6&f3=0.9
 txn_amount = float(request.args.get('f1'))
 amount_spent_past_mo = float(request.args.get('f2'))
 txns_same_merchant = float(request.args.get('f3'))
 return jsonify(list(clf.predict([[
 txn_amount,
 amount_spent_past_mo,
 txns_same_merchant
]])))

Users of the API could issue an HTTP GET request to the service,
passing in the features influencing the classification as query
string parameters, such as to fraud-model:3000/classify?

f1=0.3&f2=0.4&f3=0.3.

Payment Processing: Detecting Fraud | 57

https://oreil.ly/XMXKl
https://scikit-learn.org

Kubernetes Ideas
We could have this API deployed in Kubernetes as a Deployment
having an associated Service and configure a CronJob to do the
training. The core will also expose a Service to allow clients within
the Kubernetes cluster to access the API.

Here is a sample of a Deployment for the API. Note the use of envi‐
ronment variables to configure the containers, such as specifying the
classifier version:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ff-api
 labels:
 app: ff-api
spec:
 replicas: 3
 selector:
 matchLabels:
 app: ff-api
 template:
 metadata:
 labels:
 app: ff-api
 spec:
 containers:
 - name: ff-api
 image: quay.io/mycompany/ff-api
 ports:
 - containerPort: 5000
 env:
 - name: FF_CLF_VERSION
 # magic value - change to test
 # different versions of classifier
 value: 42
 - name: ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: access-creds
 key: access-key-id
 - name: SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: access-creds
 key: secret-access-key
 livenessProbe:
 httpGet:
 path: /healthz

58 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/ROYex

 port: 5000
 initialDelaySeconds: 5
 periodSeconds: 5

As you can see in the FF_CLF_VERSION environment variable setting
above, we can configure which version of the classifier will be used
for the service when it is deployed to production. This could be
invaluable to you if you need to roll back to a previous version of a
model, or to A/B test across different model versions.

Training with CronJob Objects
Given that we can specify the classifier version for our Deployment
and access classifiers using a shared bucket, we can configure
Kubernetes to train models on a schedule. For instance, the CronJob
outlined below would call a training script at the 20th minute of
every hour, which we could structure to train classifiers with newly
published data, and upload the results to S3 as serialized Python
objects when finished.

Using Kubernetes and the various monitoring tools it offers, includ‐
ing the venerable kubectl logs command, we can check up on
things when they go wrong (as pods may stick around for a while
after a failing execution):

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: classifier-trainer
spec:
 schedule: "20 * * * *"
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: classifier-trainer
 image: quay.io/mycompany/classifier-trainer
 args:
 - train.py
 restartPolicy: Never

Payment Processing: Detecting Fraud | 59

Once you kubectl apply the YAML, the cron job will run on
schedule. Members of the team will be able to observe the results as
well as the abstraction that is generating them. Team members could
even download results published by the job for testing and experi‐
mentation locally. As you can see, various pieces come together in
Kubernetes to create the final polished pipeline.

Site Reliability: Log Anomaly Detection
Next, we’ll look at an example architecture using machine learning
and the ELK stack (short for Elasticsearch, Logstash, and Kibana) to
identify and examine anomalies for rapid remediation. For instance,
they might be Envoy access logs, or they might be logs related to the
core functioning of the OpenStack cluster—logs emitted by services
such as Cinder, Swift, Nova, and so on.

One challenge of logging what comes out of these services is that the
volume makes it difficult to separate points of interest from the nor‐
mal “vanilla” logs such as health checks that tend to fill up our log
storage. Using Kibana’s machine learning feature, we can more easily
identify potentially alarming patterns emerging in our logs, as
shown in Figure 5-5.

60 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/psM5B
https://oreil.ly/-ar1w
https://oreil.ly/pydfz

Figure 5-5. Using Logstash and Kibana powered by an Elasticsearch
storage engine, we can spot out-of-the-ordinary activity in our logs

Implementation
Let’s take Kubernetes API server logs as a starting point to examine
how we might build out something similar to the ideas presented in
this video about anomaly detection on OpenStack logs. All the core
Kubernetes services, including the API server that responds to
kubectl commands, spit out a truckload of unstructured text logs
that look similar to the following truncated examples:

Caches are synced for APIServiceRegistrationController
OpenAPI AggregationController: Processing item
OpenAPI AggregationController: action for item : Nothing (rem
OpenAPI AggregationController: action for item k8s_internal_l
created PriorityClass system-node-critical with value
created PriorityClass system-cluster-critical with va
all system priority classes are created successfully

Site Reliability: Log Anomaly Detection | 61

https://oreil.ly/iiLyM

We can use the open source Filebeat to ship these logs to Logstash, a
layer for collecting, parsing, and transforming logs. Logstash’s capa‐
bilities allow us to structure the data coming out of our logs—
instead of flat text, we can highlight properties such as the log level,
associated IP addresses, which node of the cluster is acting up, and
so on.

The Grok Debugger and Logstash syntax reference can help us in
structuring our data (Figure 5-6). Formatting your logs in a
machine-friendly format to begin with can help immensely in mak‐
ing this process easier.

Figure 5-6. Using the Grok Debugger, we can workshop filters for pars‐
ing custom structure out of our logs

Structuring Data
A sample Logstash configuration to understand logs formatted with
klog, the Kubernetes internal logging tool, is described below. It
illustrates how Logstash’s grok filter can be used to parse structure
out of otherwise structured text. Logstash will transform
%{SYNTAX:NAME} blocks into regular expressions that capture groups
of structured text. As you can see below, if Logstash does not

62 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/5kZ6n
https://oreil.ly/24o8R
https://oreil.ly/4JEKy
https://oreil.ly/mlMGm
https://oreil.ly/fMl7u
https://oreil.ly/fMl7u
https://oreil.ly/rsStj

understand the data within our strings as a syntax that it recognizes,
we can also embed capturing groups from regular expressions
directly:

input {
 # Filebeat sends Kubernetes API server logs to Logstash
 beats {
 port => "5044"
 }
}

filter {
 grok {
 match => {
 "message" => "(?<level>.)\
(?<DAYOFMONTH>\d\d)(?<MONTHDAY>\d\d) \
%{TIME:timeofday} *%{INT:thread_id} \
%{NOTSPACE:filename}:%{INT:line_number}] \
%{GREEDYDATA:msg}"
 }
 }
}

output {
 elasticsearch {
 # Elasticsearch is running as a Kubernetes StatefulSet
 # available via a Service using a CNI-compatible plug-in.
 hosts => ["http://ourcompany-es-service:9200"]

 # We will build time-based indexes so no index gets
 # too large.
 index => "{+YYYY.MM.dd}"
 }
 stdout {
 # If Logstash itself has errors, we can get some
 # debugging info.
 codec => rubydebug
 }
}

We can then see that a log such as this:

W1124 00:58:17.986343 1 lease.go:223] Resetting endpoints
for master service "kubernetes" to [192.168.65.3]

will be transformed to have structure such as the following before
being ingested into Elasticsearch:

Site Reliability: Log Anomaly Detection | 63

{
 "level": "W",
 "DAYOFMONTH": "11",
 "MONTHDAY": "24",
 "timeofday":, "00:58:17.986343"
 "HOUR": "00",
 "MINUTE": "58",
 "SECOND":, "17.986343"
 "thread_id": "1"
 "filename": "lease.go",
 "line_number": "223",
 "msg": "Resetting endpoints for master service"
}

This unlocks a new universe of creative possibilities. For one thing,
we can explore logs by grouping and filtering on the new structured
fields such as log level, filename, and so on. We could also parse fur‐
ther structure out of our logs by dissecting the catchall msg field,
which could allow to us to extract, say, a reset_master_service
field in the WARN-level log message used as an example above. Log‐
stash, as you may note in the config, is configured to push the
results to Elasticsearch, where we can then query them in a variety
of ways, such as by using the open source Kibana tool.

Detecting Anomalies
In addition to simply querying our data, Kibana has features we can
use for anomaly detection. For instance, Figure 5-7 shows how we
can drill down on a particular field of interest that Kibana has iden‐
tified as being likely to influence an anomaly. Using this feature, we
can pinpoint when anomalies happened and dig further into logs
with this feature and time interval for more insights.

Figure 5-7. Kibana’s machine learning feature can help us identify
where anomalies are happening

64 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/3l78K

We can also get a detailed view of which specific values of other
fields influenced the field seeing the anomaly (Figure 5-8).

Figure 5-8. Kibana can draw visualizations of what was correlated
with the anomaly

We can, of course, also directly query the data stored in Elastic‐
search ourselves for other purposes. We could take this log data and
add it to our favorite tool for more sophisticated analysis. Likewise,
we could do post-hoc processing of the logs if we also store the raw
data on other storage such as an object store. Logstash includes
capabilities to perform such a “tee” function. We need only to add
another output in the configuration discussed above.

Kubernetes Ideas
There are a variety of ways to implement such a stack on Kuber‐
netes. The most important concern in this setup is likely to be get‐
ting a reliable implementation of the data engine (such as
Elasticsearch) in place: due to its stateful and distributed nature, a
sizable Elasticsearch cluster is unlikely to be a walk in the park to
operate. Our options might include outsourcing maintenance for
that piece to someone else, such as a cloud provider, but we also
might need to deploy on premise, or we might need flexibility that
out-of-the-box solutions do not provide. Let’s review some ideas for
deploying Elasticsearch (and Logstash and Kibana) on Kubernetes
by looking at some of the resources created with Elasticsearch charts
from Helm, an open source package manager for Kubernetes.

The best way to implement an Elasticsearch architecture is by using
a StatefulSet for the master nodes and the data nodes of an
administrated Elasticsearch cluster. We can see these with kubectl
get statefulsets, and we can see that we have three master nodes

Site Reliability: Log Anomaly Detection | 65

https://github.com/helm/helm

(to ensure high availability and reliability) as well as two data nodes
to store the data and do the work assigned by the masters:

$ kubectl get statefulsets
NAME READY AGE
logcluster-elasticsearch-data 2/2 14m
logcluster-elasticsearch-master 3/3 14m

Let’s take a look under the hood at what these StatefulSet resour‐
ces contain to get a feel for how this type of architecture is struc‐
tured on Kubernetes with the logcluster-elasticsearch-master
StatefulSet:

$ kubectl get \
 statefulset/logcluster-elasticsearch-master \
 -o yaml

Nested within the outermost spec key defining the actual guts of the
StatefulSet, we see some properties that define metadata about the
set as well as properties to help the Kubernetes scheduler under‐
stand how to run this app. We want three replicas in the Stateful
Set, and we express a strong preference not to be scheduled on the
same nodes as pods with the labels app=elasticsearch, compo
nent=master, or release=logcluster. This ensures that the other
pods in the StatefulSet in question for this Elasticsearch cluster do
not get scheduled on the same node (assuming that there are other
nodes on the network for them to be scheduled on):

podManagementPolicy: OrderedReady
replicas: 3
template:
 spec:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchLabels:
 app: elasticsearch
 component: master
 release: logcluster
 topologyKey: kubernetes.io/hostname
 weight: 1

The actual containers definition for the master pods is of interest.
We can see in its definition that we can tune options such as JVM
heap size and resource claims, as we are also dynamically allocating

66 | Chapter 5: Example Pipeline Architectures

storage for the parts of the filesystem Elasticsearch expects to be
persisted across pod runs:

- env:
 - name: NODE_DATA
 value: "false"
 - name: DISCOVERY_SERVICE
 value: logcluster-elasticsearch-discovery
 - name: PROCESSORS
 valueFrom:
 resourceFieldRef:
 divisor: "0"
 resource: limits.cpu
 - name: ES_JAVA_OPTS
 value: '-Djava.net.preferIPv4Stack=true -Xms512m -Xmx512m '
 - name: MINIMUM_MASTER_NODES
 value: "2"
image: docker.elastic.co/elasticsearch/elasticsearch-oss:6.8.2
imagePullPolicy: IfNotPresent
name: elasticsearch
ports:
- containerPort: 9300
 name: transport
 protocol: TCP
readinessProbe:
 failureThreshold: 3
 httpGet:
 path: /_cluster/health?local=true
 port: 9200
 scheme: HTTP
 initialDelaySeconds: 5
 periodSeconds: 10
 successThreshold: 1
 timeoutSeconds: 1
resources:
 limits:
 cpu: "1"
 requests:
 cpu: 25m
 memory: 512Mi
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /usr/share/elasticsearch/data
 name: data
- mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
 name: config
 subPath: elasticsearch.yml

Site Reliability: Log Anomaly Detection | 67

The end user of this image can fine-tune JVM options using this
environment variable parameter.

This particular Elasticsearch pod definition doesn’t request
much memory or CPU; a production setup would likely need
more.

These volume definitions are key. A volumeClaimTemplates key
within the StatefulSet definition helps users define where the
backing storage for Elasticsearch to use will be mounted.

The volumeMounts define where in the container the Persistent
Volume will be mounted. In Kubernetes, when resources have a need
for external storage, such as a block storage device mounted at a cer‐
tain location like /usr/share/elasticsearch/data, they can
request a “claim” to storage using a PersistentVolumeClaim (which
is what having volumeClaimTemplates in the StatefulSet creates).
Either the PersistentVolumeClaim will be matched up with an
existing storage device that Kubernetes knows it can use (known as a
PersistentVolume), or a new PersistentVolume will be created
(so-called dynamic provisioning of a PersistentVolume). For
instance, creating a PersistentVolumeClaim to Ceph block storage
in YAML might look like this:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: claim1
spec:
 storageClassName: cephfs
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

Because of this use of PersistentVolume, we can claim storage that
lives beyond the lifetime of any individual pod (which will eventu‐
ally be rolled) and maintains state over time.

Logstash could be deployed as a Deployment with an associated
Service allowing processes across the cluster to connect to it and
send data, and Kibana could also be its own Deployment, accessed
using port forwarding from kubectl or normal Kubernetes ingress.

68 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/svVMF

GPU Computing: Inference at the Edge
Many intelligent applications need to use special hardware such as
GPUs to effectively train and classify. Convolutional neural net‐
works, for instance, have a structure that is so “deep” that it’s only
practical to optimize their loss function on GPUs in a highly parallel
fashion. Likewise, GPUs might be needed for efficient predictions
once the models are trained. To complicate things further, we might
also need to deploy this specialized hardware at the “edge”—not in
the cloud, but physically near the use case they are intended for.

For instance, self-driving cars relying on neural networks will need
embedded GPUs and models because they need to act and respond
rapidly. Such applications cannot handle the network latency of con‐
necting to a predictive service running in the cloud or a remote data
center. Deploying such a use case has a lot of challenging facets. For
one thing, the correct drivers and hardware support have to be
installed on the target edge nodes, and they are likely to be difficult
to update once deployed. Getting telemetry about how things are
performing and troubleshooting issues is going to be difficult since
the computing is happening on-site at the edge and is not necessar‐
ily available on the public Internet.

Kubernetes supports a variety of ways to help with these issues. In
the next section, we’ll take a look at architecture for a quality control
application that classifies manufactured products as defective or
nondefective.

Implementation
As you can see in Figure 5-9, our implementation will have edge
nodes that have special hardware attached (GPUs). These will power
a TensorFlow model that classifies photos of products as they come
off the assembly line. If a product is not above a certain acceptable
threshold of confidence according to the model’s notion of quality, a
human operator can be alerted to inspect or remove the product. If
we can power these predictions with this type of edge computing,
we can greatly increase the efficiency of quality control in our
manufacturing.

Our edge nodes are connected to an upstream Kubernetes cluster
that can run remotely and is responsible for scheduling on these
special types of workloads as requested. Connection to an upstream

GPU Computing: Inference at the Edge | 69

https://oreil.ly/MVymx
https://oreil.ly/MVymx

Kubernetes cluster on a public or private network can be secured
using TLS, ensuring that only the correct downstreams can connect.
We can’t structure the deployment haphazardly due to the need to
ensure we are running within the proper edge computing location
and with the proper hardware, so there are specific ways of deploy‐
ing such an architecture on Kubernetes that we need to consider.

Figure 5-9. Kubernetes has the flexibility to take advantage of special
hardware and deploy selectively to environments

Kubernetes Ideas
Nvidia, a popular manufacturer of GPUs, has a GPU Operator that
is perfect for addressing many concerns out of the box that we
would otherwise have to worry about ourselves. Operators in
Kubernetes allow users to pass off programs to other users that
mimic some of the actions an expert human operator might take for
specific use cases when managing a cluster. For instance, operators
exist that help users administrate things like databases, which need a
lot of attention in the form of backups, tuning, and monitoring.

The Nvidia GPU Operator source code can help us understand
what’s going on behind the scenes. For starters, it installs Node Fea‐
ture Discovery (NFD), a Kubernetes plug-in that will detect specific

70 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/rIiyd
https://oreil.ly/_5hrP
https://oreil.ly/isxi_
https://oreil.ly/56XQX
https://oreil.ly/56XQX

attributes of interest that nodes have available and advertise them
for scheduling using node labels. Hence, we can tell Kubernetes to
schedule selectively based upon which features are available and
have some freedom from managing that part manually as cluster
administrators, which could be a big headache. The list of features
supported by NFD has huge utility because it is so comprehensive,
offering an opportunity for users to schedule based on kernel mod‐
ules available, special CPU features, special devices, and more. In
this case, PCIe device IDs are the feature and label of interest.

With NFD installed, the Nvidia operator can help us schedule pods
based on where GPU resources are available. The Nvidia operator
also takes care of things system administrators would typically have
to do, such as installing the correct device drivers as a kernel module
on each host. The operator state machine follows the same model of
the Kubernetes control loop, ensuring that all parts of the cluster are
converged to the desired state—that is, with each relevant node hav‐
ing the correct version of the kernel drivers installed for the attached
Nvidia device.

The Nvidia operator will help us manage the GPU components, but
what if we have several edge locations under our wing in the over‐
arching Kubernetes cluster? For that, we can ensure correct schedul‐
ing across various locations using node labels. Adding a label to a
given Kubernetes node is simple:

$ kubectl label node edgenode-name edgeLocation=factory1
node/edgenode-name labeled

This can be referenced later as a constraint on scheduling our con‐
tainers to ensure they are deployed to the correct edge location.

For instance, the configuration for running a single pod that is
scheduled using the Nvidia operator would look like the following.
Since we set the edgeLocation label to factory1 above, we match
that in this pod definition’s nodeSelector key. This ensures the
resources are scheduled according to what we need. We could even
extend the concept to ensure we get the specific GPU type we want:

GPU Computing: Inference at the Edge | 71

https://oreil.ly/Ya8FH
https://oreil.ly/hhJ70
https://oreil.ly/nprZj

apiVersion: v1
kind: Pod
metadata:
 name: qa-classifier
 labels:
 app: qa-classifier
spec:
 securityContext:
 fsGroup: 0
 containers:
 - name: qa-classifier
 image: quay.io/ourcompany/qa-classifier:v0.2.3
 resources:
 limits:
 nvidia.com/gpu: 1
 ports:
 - containerPort: 5000
 name: qa-classifier
 nodeSelector:
 edgeLocation: factory1
 offeredGPU: nvidia-tesla-p100

The Nvidia GPU Operator also includes instructions for scraping
GPU metrics with Prometheus. This allows us to monitor what’s
going on with our GPUs, giving us a peek at what would otherwise
be obtuse performance. The classification APIs could also emit
Prometheus statistics defining their latency, classification perfor‐
mance, and the number of errors encountered. Their logs could
meanwhile be forwarded using a DaemonSet running on every node
to a remote or on-site logging cluster, such as our previous ELK
example we’ve mentioned several times throughout the text.

The options for deploying an edge computing setup using GPUs on
Kubernetes, and platforms like OpenShift, look crisp and enticing.
Kubernetes is likely to power the next wave of intelligent applica‐
tions running at the edge as well as in the data center proper.

72 | Chapter 5: Example Pipeline Architectures

https://oreil.ly/hJ_b0
https://oreil.ly/hJ_b0

About the Authors
Kyle Bader is a principal solutions architect on the storage solutions
team at Red Hat. Kyle lends his design and operational skills with
Ceph to help companies be successful with massive-scale data sys‐
tems.

Sherard Griffin is responsible for the Open Data Hub, a
community-driven reference architecture for building an AI-as-a-
service platform on OpenShift. Sherard also leads the deployment
of Open Data Hub in Red Hat’s internal data center where data sci‐
entists across the company run machine learning initiatives. Addi‐
tionally, he works with hardware and software partners to build out
an ecosystem of AI technologies optimized to run on OpenShift as
certified operators.

With over 20 years of experience in the IT industry, over a decade in
the storage industry, and deep experience in containers and hybrid
cloud, Pete Brey provides great insight into today’s data analytics
challenges and how to best solve those challenges using proven solu‐
tions that work.

Daniel Riek is a senior director for the AI Center of Excellence at
Red Hat and is a technologist with 20 years of experience in the
open source business, global product management, engineering
management, and product strategy. He brings solid experience in a
global leadership role at a S&P 500 company to sales and solution
architect positions, IT consulting, management of software develop‐
ment teams across VC financed and publicly traded companies.

Nathan LeClaire is a Go programmer and author living in San
Francisco, CA. He has explored his passion for developer tools and
open source working at startups such as Docker and Honeycomb.

	Cover
	Red Hat
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Evolution of the Data Analytics Infrastructure
	Mapping and Reducing
	YARN and Storage

	Evolution of Scheduling
	Deploying at Google Scale
	Scheduling Constraints
	Container Accessibility and the Rise of Kubernetes
	Everyone Joins In on the Fun

	Bringing It All Together

	Chapter 2. A Platform for Intelligent Applications
	Defining Intelligent Applications
	What Is Artificial Intelligence?
	What Are Intelligent Applications?
	Pushing Boulders up Hills
	Intelligent Applications for Logs

	Intelligent Application Pipelines
	Data Science Workflow
	Serving Trained Models
	A Quick Glance at Architecture

	Challenges of Using Traditional Infrastructure
	What if we need periodic updates of the latest AI and machine learning tools?
	What if we need to scale up or scale out?
	What if we need to make the most of our resources?
	What if our data is too sensitive for the cloud?
	What if cloud GPU computing is too expensive?
	What if we need to understand how models make decisions?
	What if we want to use multiple cloud vendors?

	The Hybrid and Multicloud Scenario
	Kubernetes Is a Great Choice for Intelligent Applications

	Chapter 3. Object, Block, and Streaming Storage with Kubernetes
	Object Storage
	Object Storage for Intelligent Applications
	A Note on Consistency
	Shared APIs

	Block Storage
	Streaming Storage
	Streaming Storage Resiliency
	Processing Data at High Speed

	Using Storage in Kubernetes
	Object Storage in Kubernetes
	Block Storage in Kubernetes
	Streaming Storage in Kubernetes

	Summary

	Chapter 4. Platform Architecture
	Hardware and Machine Layers
	Hardware
	Physical and Virtual Machines
	Persistent Storage
	Networking

	Data and Software Layers
	Hadoop Lambda Architecture
	Kubernetes Lambda Architecture

	Summary

	Chapter 5. Example Pipeline Architectures
	E-commerce: Product Recommendation
	Implementation
	Kubernetes Ideas

	Payment Processing: Detecting Fraud
	Implementation
	Kubernetes Ideas
	Training with CronJob Objects

	Site Reliability: Log Anomaly Detection
	Implementation
	Structuring Data
	Detecting Anomalies
	Kubernetes Ideas

	GPU Computing: Inference at the Edge
	Implementation
	Kubernetes Ideas

	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

