
AN EVENTFUL TOUR FROM ENTERPRISE
INTEGRATION TO SERVERLESS

Marius Bogoevici (@mariusbogoevici)
Christian Posta (@christianposta)
9 May, 2018

About Us

Christian Posta
@christianposta
Chief Architect - Red Hat

Marius Bogoevici
@mariusbogoevici
Chief Architect - Red Hat

What we’re going to talk about

● Event-driven architectures have been around for a bit; what are they, why are they
powerful, and why are they back “en-vogue”

● Messaging is often used as a backbone for event-based distributed systems; what
options do we have for cloud-native event-driven architectures?

● Integration is a necessary capability for any organization; how does streaming,
cloud-native architectures and microservices fit in?

● Is Functions the next utopian architecture? Where does functions fit in a world of
microservices?

Unfortunately, we cannot predict the future. As an
organization, we must be able to observe and experiment
in our environments and react accordingly. We need to be
agile.

On the other hand we must be mindful of our resources;
we want to eliminate waste, reduce time to experiment,
and make it cheap so we can increase our returns

We cannot build complex systems from complex parts.
We must keep our components as simple and
understandable as possible.

We live in an event-driven world

Pop quiz!

Universal panacea Solution to
● technical challenges
● business complexity
● bring agility, utilization,

clarity into balance

Event-Driven Architecture is a ...

Request-reply and event-driven interaction

Interaction: ephemeral and
synchronous
Highly coupled
Low composability
Simplified model
Low tolerance to failure

Interaction: persistent and
asynchronous
Decoupled
Highly composable
Complex model
High tolerance to failure

What is an event?

● Action or occurrence, something that happened in the past
○ ‘Order created’, ‘user logged in’, ‘

● Event characteristics:
○ Immutable
○ Optionally persistent
○ Shareable

● Event types: [1]
○ Notification
○ State Transfer (Command)
○ Event-Sourcing/CQRS

[1] https://martinfowler.com/articles/201701-event-driven.html

Designing systems with events
● EDA: event-centric approach in system design

○ Treating events as part of your domain model
○ Designing components as event handlers and

emitters
● EDA is aligned with the goals of domain-driven design

○ Enforce isolation and decoupling between bounded
contexts

○ Properly designed events can create an expressive
ubiquitous language

● EDA creates highly observable and extensible systems
● Event storming: events-first design

Events in the digital business
● We live in an event-driven world (literally), and that impacts how we do business
● Next-generation digital business is about agility and experimentation

○ Shifting focus from analyzing the status quo to understanding the change in
progress

○ Blurring the distinction between events and data
○ Architectural focus shifting from data-centric to event-driven

● Increased importance of bottom-up approaches in business event design
○ Complex event processing driven by experimentation, analytics, machine

learning
○ Emphasis on readiness to observe and collect events before ascribing them

a business meaning

Event-driven architectures reduce friction

● From a technical standpoint:
○ Building robust and resilient distributed architectures

● From a development process standpoint
○ High composability encourage agility and experimentation

● From a business standpoint:
○ Aligning digital business with the real world

Delivering events through
infrastructure

Event distribution infrastructure with
message brokers

● Publish subscribe semantics (vs queuing)
● Subscribers receive events at their own pace
● High utilization of consumers, regardless of event publish
● Persistent vs non-persistent
● Example: ActiveMQ, RabbitMQ, etc

Event distribution infrastructure with
message brokers

Types of events

● User activity tracking
● Infrastructure monitoring
● Business activity events
● Domain events

Event distribution infrastructure with
message brokers

Handling large explosion in event sources,
requires optimization in broker technology

● Decentralized processing
● Move indexing and bookkeeping to consumers
● Make fundamental data structure first class citizen (log data

structure)
● Replication and failover part of the protocol
● Example: Apache Kafka, Kinesis, etc

Event distribution infrastructure with
message brokers

Using events for integration

From ESBs to agile integration

Optimized for utilization
Centralized, tightly coupled
Mixing logic with infrastructure

Optimized for agility
Decentralized, decoupled
Separate messaging middleware from logic

Modern enterprise integration:
agile, decentralized, cloud-native

Optimized for agility
Decentralized, decoupled
Separate messaging middleware from logic

Preserves benefits of agility while optimizing resource
utilization
Clear separation of concerns between compute and
data infrastructure and application logic

Enterprise integration patterns for microservices

● Originally designed for building integrated solutions out of siloed
enterprise systems

● Applicable to general-purpose event-driven interaction
● Very well suited for building event-oriented distributed systems

(aka event-driven microservices) - e.g. with Apache Camel

Enterprise Integration and Streaming

● Perpetual data and event “streams” as a first class citizen
● Data in aggregate vs individual messages
● Small services working together to interpret large numbers of

streams
● Data in perpetual motion
● Eventual consistency as data synchronization pattern
● Examples: Apache Camel, Kafka Streams, stream-processing

frameworks

Modern enterprise integration:
agile, decentralized, cloud-native

Microservices and Functions

● Reduce the responsibility of a service to a specific business
functionality

● Allow parallelization of work
● Independently deployable (infra) and independently releasable

(business)
● Can optimize for increased utilization (separating out parts of the

code base that exhibit different i/o, throughput, latency needs)
● Re-use services where applicable

Microservices

Microservices

● Reduce overhead in running services
● Higher density/utilization gains
● Portable across deployment platforms
● Rich ecosystem (see Kubernetes!)

Containerization

Containers and microservices

● Microservices great at enabling agility from existing systems
● Well understood business, well understood boundaries
● Don’t optimize for microservices unless you have problems with

your application architecture
● Don’t complicate experimentation / value discovery with complex

architecture

What’s your usecase?

● Usually not well understood
● MVPs are throwaway
● Usage patterns unknown
● Adoption unpredictable

Exploratory use cases

● Low number of hours/minutes of use
● Event-driven, spikey utilization
● Lots of compute for very short period of time

Under-utilization use cases

● Webhook callbacks
● Scheduled tasks
● File processing
● Reacting to database changes
● Limited stream processing

Limited integration use cases

● Pay only for usage without regard
for topology (Serverless)

● Event driven by nature
● On demand
● Write only code, heavy lifting is

handled for you
● High parallelization
● High utilization

Functions as a Service (FaaS)

Functions as a Service (FaaS)

● Event-driven microservices
● Containers (on prem, in the cloud)
● Functions
● Serverless (databases, message queues, caches, etc)

As you move to cloud native, you have options.

Thanks for coming to our talk!

Christian Posta
@christianposta
Chief Architect - Red Hat

Marius Bogoevici
@mariusbogoevici
Platform Architect - Red Hat

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

THANK YOU

