
Best Practices for Working with
Data in a Microservices Architecture
Emmanuel Bernard
Chief Architect, Data

Kim Palko
Product Manager, Data

Madou Coulibaly
Solutions Architect, Data

Red Hat

MSA has many benefits
- Freedom to independently develop and deploy services
- Better fault isolation
- Code for different services can be written in different languages
- Continuous integration and continuous delivery
- Easy to understand and modify
- Organized around business capabilities
- Easy to scale and re-use
- Work well with containers

But what about the data?
Martin Fowler: Decentralized Data Management where each microservice
encapsulates its own data

Problems with a data store per microservice:

- Not enough ROI for breaking up existing databases and data warehouses
- Copying data can lead to inconsistency
- Security issues around access control
- Difficult to keep a consistent view of data across microservices

-

From Brownfield Database
to Greenfield Microservice

Emmanuel Bernard

Monolith to microservices
From app velocity

Monolith to microservices
To data velocity

Big bang approach
What about the brownfield app?

One step at a time

Monolith
app

New
registration
app (RW)

Monolith
RDBMS

Virtual DB
isolation layer
(subset view)

User
reservations
management

(RW)

Virtual DB
isolation layer
(subset view)

JBoss Data Virtualization

Benefits
Of data virtualization

Data remains centralized
● Monolith still works

Microservice only seeing the subset it is supposed to
● Clear boundaries ; Avoid dependency abuse
● Read / write

Step by step evolution preparing for the future
● Virtually choking the monolith before the coup de grace
● Data lineage

JBoss Data Virtualization

Data security

Controlling who uses which data set

More microservices, more demands on your data sources
● Who uses what?

Regulatory constraints

Many aspects of securitization including
● Restrict access to a subset of the data
● Anonymize data
● Restrict who has access to specific data
● Audit and know who has see what

Approach
A reusable control piece: data firewall

Monolith
app

Super user
for call center

Monolith
RDBMS

Virtual DB
Adding RBAC Elasticsearch

Audit log

JBoss Data Virtualization

Common technology between apps and databases
A la carte restriction capabilities
● Controlled by a different team

Transparent to the microservice app development
Reusable solution across all microservices

Benefits
JBoss Data Virtualization

Demo part 1
Hotel Reservations and Check-in

Kim Palko

Original Hotel Booking Application
Three-Tier Architecture

Single Application, Single Database
- Booking reservations
- Customer rewards
- Hotel room inventory

Relational Database

Browser

Presentation Logic

Business Logic

Data Access Logic

Application Server

Reservation Information
Customer Data
Hotel Inventory

Problem: New functionality requirements with tight
deadlines

- Teams need to work independently and
in-parallel

- Architecture needs to be open to
post-relational technology

- GDPR:
- Need to restrict access to a subset of

data
- Anonymize data (no PII)
- Audit who has had access to what data

● Mobile check-in
● Keyless entry
● GDPR privacy

regulations

Virtual
Inventory

DB

Inventory
Service

Virtual
Customer

DB

Customer
Service

Demo Architecture: Functional

Monolith
app

Reservation
Service

Virtual
Reservation

DB

Monolith
RDBMS

Virtual
Reporting

DB

Mobile App

Booking
State

Service

Shared
State
IMDB

Web App SQL Client

Demo part 1

Madou Coulibaly

Solution: Move to microservices architecture
Break up the monolithic database virtually

Virtual
Inventory

DB

Inventory
Service

Virtual
Customer

DB

Customer
Service

Monolith
app

Reservation
Service

Virtual
Reservation

DB

Monolith
RDBMS

Virtual
Reporting

DB

Mobile App

Booking
State

Service

Shared
State
IMDB

Web App SQL Client

Demonstrated benefits
Data remains centralized

- Original application continues to work
- Faster time to production vs physically breaking up database
- Data can be migrated over time if necessary
- Can easily augment centralized database with new data sources
- Developers and Operations get along with each other

Security

- Restrict access to subset of the data (by design or by roles)
- Anonymize the data

Sharing state in a stateless app world

Emmanuel Bernard

The challenge of state

Microservices need to scale out (up and down): very elastic
● Scaling state in the app?
● State scaling or compute scaling?

Deploying new version (A/B or canary) with no disruption
● State?

Which state
● Basket, last articles seen, HTTP session etc

Approach
There is a service for that

Red Hat Data Grid

Application
v1

Shopping Cart

S-Z / A-F

Application
v1Application

v1

Application
v2

Shopping Cart

G-L / M-R

Shopping Cart

M-R / S-Z

Shopping Cart

A-F / G-L

Data Grid

Low latency
Complexity outside the app
Cross data center replication

Benefits

Application v1
Shared stateApplication v1

Application
Shared state

DC1

Load balancer

Application v1
Shared stateApplication v1

Application
Shared state

DC2

Replication

Serves customers A-M

Serves customers N-Z Customers A-Z

Customers A-Z

Red Hat Data Grid

Caching

One service to fail them all

Cluster of microservices with dependencies
● Latency accumulation

What if one goes down

µ-service 1

µ-service 2

µ-service 3

µ-service 4

Approach
There is a service for that

Red Hat Data Grid

Cache

A-F

Application 1 v2

Application 2

Cache

G-L

Cache

M-R

Cache

S-Z

Application 1

Externalize infrastructure
Simpler
Better hit/miss ratio

Differentiated lifecycle and scaling
A/B or canary testing without performance drop
Surviving the temporary loss of one microservice

Common requests

Benefits
Red Hat Data Grid

Maturing your data microservices
approach

CQRS, event sourcing and more

Microservices
Data islands

Full isolation between microservices islands
● Hard to achieve

Adding new services off the same data stream

Scaling different parts independently
● Give flexibility to change (data) tech
● CQRS

Change data capture to the rescue
Monolith
app

Monolith
RDBMS

Real time
DB change
(CDC)

Source
Monetary
Tx event
filter

Monetary
Tx push
notification
app

User <-> device
DB

Source
Monetary
Tx event
filter

Spending
dashboard
builder

Spending
dashboard
aggregate DB

Debezium

Benefits

CDC decorrelates the existing database from later consumption by new
systems
Lower the load on the database
No update cost on exist apps consuming the database
Opens up “real time” doors

Of Change Data Capture
Of CQRS

Debezium

Demo part 2
Hotel Reservations and Check-in

Kim Palko

Problem: Need to share the booking state

Need to share booking state while customer is searching for a room

- Select one room (state that needs to be shared across room inventory)
- Then go to the Customer Service to do credit card checking
- then the Reservation Service to create the reservation

Assure that all the microservices are stateless

Every step across the application will be stored in a Data Grid and saved

The state can be shared across Web and Mobile UI’s

Problem: Need to test new functionality with limited
availability before rolling out globally
A/B Testing

- Highlight rooms with a living area
- Change button color and add an icon

- 2 different versions of the application:
- one showing the new screen and one without
- Part of customers have the new screen

- After one week trial, make a decision which version to keep in production

Demo part 2
Hotel Reservations and Check-in

Madou Coulibaly

Solution: Share state with an in-memory data grid

Virtual
Inventory

DB

Inventory
Service

Virtual
Customer

DB

Customer
Service

Monolith
app

Reservation
Service

Virtual
Reservation

DB

Monolith
RDBMS

Virtual
Reporting

DB

Mobile App

Booking
State

Service

Shared
State
IMDB

Web App SQL Client

Benefits demonstrated
Shared State

- Share booking state across microservices and different UI’s
- Reliability of the shared data (distributed)
- Low latency
- Scalability (out and down)

A/B Testing

- Deploying a new version of the application re-using the currently
used state

- Upgrading an app with no down time

Demo Architecture: Projects

Monolith
app

SQL Client

Summary
- When moving a monolithic application to a microservices architecture

- take a pragmatic approach and break up large data sources logically
- option to move data physically over time

- Architect for security up front
- Delegate data handling to specialized services (i.e. out of the app)

- Don’t try to implement caching, shared memory, data virtualization
etc.

- Red Hat can help you manage data in a MSA, starting where you are
today

- Take your microservices evolution as a journey

References

- Re-create this demo yourself
- https://github.com/mcouliba/hotel-booking

- Free download book:
- Migrating to Microservice Databases: From Relational

Monolith to Distributed Data

by Edson Yanaga, Red Hat (with Forward by Emmanuel
Bernard)

- Blog: “Low Risk Monolith to Microservice Evolution, Part III”
by Christian Posta, Red Hat

https://github.com/mcouliba/hotel-booking
https://developers.redhat.com/promotions/migrating-to-microservice-databases/
https://developers.redhat.com/promotions/migrating-to-microservice-databases/
http://blog.christianposta.com/microservices/low-risk-monolith-to-microservice-evolution-part-iii/

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

THANK YOU

