
0

SOLUTIONS DELIVERY PLATFORM

Josh Boyd | Steven Terrana

Red Hat Summit 2018

L E V E R A G I N G O P E N S H I F T T O A C C E L E R A T E
A T O ’ S

❖ GETTING AN ATO IS HARD

❖ HOW OPENSHIFT ACCELERATES

❖ THE TRUSTED SUPPLY CHAIN

❖ SOLUTIONS DELIVERY PLATFORM

❖ CONTINUOUS DELIVERY AT SCALE

❖ DEMO

AGENDA

2

WHAT IS AN ATO?

Page 1 of 462

Getting an Authority to Operate requires documenting over 1,500
security controls aggregated from multiple sources.

FISMA
The Federal Information Security Management Act

NIST
The National Institute of Standards and Technology

DISA STIGs
The Defense Information Systems Agency’s Security Technical Implementation Guides

CIS Benchmarks
The Center for Internet Security

Understanding, documenting, and implementing all that is
required can be overwhelming and difficult

FIPS
The Federal Information Processing Standards

FedRAMP
The Federal Risk and Authorization Management Program

3

MORE CHALLENGES STILL

When modernizing legacy applications Cloud Infrastructure and
Containerization add new layers of abstraction to the stack, each

requiring their own security controls.

Security Controls
Applications Inherit

Infrastructure

Platform

App Application Responsibility

Enterprise

4

HOW OPENSHIFT HELPS

OPENSHIFT IS THE ENTERPRISE GRADE KUBERNETES
RUN ON REDHAT ENTERPRISE LINUX

OpenShift Compliance Guide

from https://www.openshift.com/dedicated/index.html

Security Controls

423

11

187

73

Controls typically
inherited from parent
organization.

Controls inherited from
physical infrastructure
provider

Controls inherited from
OpenShift cluster.

Tenant responsibility

http://openshift-compliance-guide.readthedocs.io/en/latest/index.html

BOOZ ALLEN’S UNIFIED MODERN SD APPROACH

5Booz Allen Hamilton Internal

4 CORE TENETS

• Open Performance

• Continuous Security

• True Automation

• Continual Learning

6 INTEGRATED CAPABILITIES

▪ Autonomous Delivery Teams

▪ Agile

▪ User-Centric Design (UCD)

▪ Open Tech

▪ Microservices

▪ DevSecOps

BOOZ ALLEN’S UNIFIED MODERN SD APPROACH

6Booz Allen Hamilton Internal

+ Small Fully Integrated Autonomous Delivery Teams

+ Team Owns All Aspects from Dev to Ops

+ Shorten time for Resolution of Issues & Delivery of

Features

+ Guarantee Stable and Repeatable Operating

Environments Every Time

+ Automate as much as Possible (test, infra, deploy,

etc.)

+ Proactively Stop and Fix Potential Defects

+ Transparency & Continuous feedback

+ Shift Security to the left and throughout

+ Focus On and Validate User Experiences

+ Granular Services and Functions

7Booz Allen Hamilton | Digital Solutions

BOOZ ALLEN’S UNIFIED MODERN SD APPROACH

8

BOOZ ALLEN DEVSECOPS PUTS THE SECURITY IN DEVOPS

CONTINUOUS SECURITY & COMPLIANCE IS PERVASIVE IN OUR DEVOPS APPROACH. IT CROSS -
CUTS EVERY PRACTICE AREA
Security and compliance are indicative of the same software delivery sins that spawned the DevOps
movement. Work piles up because it is tedious, foreign, or difficult. Security pros are alienated and
left to burn down the pile in isolation, as an afterthought. True concerns then become hugely
disruptive, which breeds further discontent within the team.

Image Scanning

Unpack and scan dependencies

and configuration of the image to be

used at runtime for vulnerabilities,

out-of-date patching, and to ensure

a trusted pedigree.

Accessibility Assurance

Crawl web pages for compliance

with section 508 standards to give

developers early warning and

opportunity to improve the site

while accelerating manual 508

testing.

Continuous Compliance

Routinely scan the configuration of

hosts or containers in their packaged

image state or at runtime for

compliance with security policy

groups (NIST, CIS, FISMA, STIG,

etc.), for required patches, or for

configuration drift.

Static Code Analysis

Analyze the code written by

developers for inadvertent

technical and logical flaws that

make it vulnerable.

Dynamic Application Security

Testing

Perform automated penetration

testing to see how your application

will withstand common attacks at

runtime.

Dependencies

Prevent introduction of

vulnerabilities from the outside.

Scan libraries in dependency repos,

source code repos, and on disk for

known vulnerabilities.

• Shift-left many security and compliance
activities as a shared responsibility of
the whole team.

• Educate and automate security vigilance
to establish early detection, confidence,
and trust required for Continuous
Delivery.

• Perform vulnerability and compliance
inspection of dependencies, code,
container images, and running
applications

AS WITH QUALITY ASSURANCE, SECURITY ASSURANCE AND COMPLIANCE CAN BE
INTEGRATED INTO YOUR SOFTWARE DEVELOPMENT LIFECYCLE

TRUSTED SOFTWARE SUPPLY
CHAIN

Booz Allen Hamilton | Digital Solutions

OUR MODERN SD APPROACH – DEVSECOPS

THE DEVSECOPS PIPELINE IS A CONFIGURABLE WORKFLOW

Environment Promotion
Production Readiness / Maturity

Sandbox
[SBX]

(Prototype)

Local Dev
[LCL]

(Develop)

Build
[BLD]

(Integrate Code)

Integration
Testing [INT]

(Integrate Component)

System
Integration

Testing [SIT]
(Integrate Component)

Shared Dev
[DEV]

(Integrity)

Testing
[TST]
(Verify)

Staging
[STG]
(Union)

Acceptance
Testing [AT]

(Accept)

Pre-Prod
[PRE]

(Rehearse)

Production
[PRD]

(Release)

Tech Decision Quality Gate Stakeholder Decision

Note: Not All Environment Types are Required

Inspect
Image Scan

Acceptance
Tests

Pen Tests

Resiliency
Tests

Performance
Tests

508
Compliance

Acceptance
Tests

End-to-End
Functional

Host Scan

Compliance

Network
Scan

Pre-Prod
Smoke Tests

Synthetic
Tests

Resiliency
Tests

Performance
Tests

Post-Prod
Smoke Tests

Synthetic
Tests

A/B Tests

Metric
Threshold

Alerts

Security
Monitoring

Functional
Tests

System
Tests

Exploratory
Tests

Component
Integration

Integration
Tests

UI Tests

Integration
Tests (E2E)

UI Tests

Security
Tests

Integration
Tests

Component
Tests

Contract
Tests

508 Sniffer

Unit Tests

Static
Analysis

Dependency
Scan

Code
Coverage

Code &
Compile /

Lint

Static
Analysis

Unit Tests

Dependency
Blocking

Install

Integrate

Explore

Prove

Color Coding by DevSecOps Activity

Develop

Plan

Test

Integrate

Secure

Provision

Deploy

Comply

Monitor

Operate

10

DEVSECOPS: YOU’RE NOT DONE ONCE YOU’RE IN PRODUCTION

Continuously monitor containers in production for security policy violations

Stay Secure with

• Capture the activity on both sides of the security

event

• Log every system call on your cluster

• Pause containers who violate security policies

• Alert teams when policy breaches occur

11

THE BAH SOLUTIONS DELIVERY PLATFORM (SDP) IS THE PURPOSE-BUILT
SOLUTION THAT ENABLES OUR PHILOSOPHY AND PUTS PROCESSES AND
PRACTICES INTO ACTION

OUR MODERN SD APPROACH – DEVSECOPS - SDP

Standardize your organization’s

continuous delivery

Support all the activity

Aggregate metrics for actionable

insights to achieve continuous

learning

DevSecOps Dashboard

Secure Pipeline

Container Platform

REFERENCE MODEL FOR THE SOLUTIONS DELIVERY PLATFORM BENEFITS

▪ End-to-end traceability of delivery
▪ Real-time status at a glance
▪ Single view of multiple apps/components and teams
▪ High-fidelity drill-down to activity-specific metrics

▪ Automate delivery, and assurance of security & quality
▪ Enable secure, on-demand flow of new features
▪ Continuous, quantitative, and actionable feedback
▪ Shifting-left security and streamlining activities mitigates

risk by avoiding big and long releases

▪ Productivity increase with self-service, homogenous IT
▪ Scalable, resilient backbone
▪ Environment parity
▪ Improved resource utilization

Feature

Feature

Feature

Feature Feature

Feature

Continuous & Automated Security and ComplianceAutomated provenance with a

trusted supply chain to production

12

SOLUTIONS DELIVERY PLATFORM PIPELINE FRAMEWORK: WHAT?

Shared Libraries Abstract Reusable Functionality

Allows composable “plug and play” pipelines

Staging
[STG]
(Union)

Inspect
Image Scan

Acceptance
Tests

Pen Tests

Resiliency
Tests

Performance
Tests

508
Compliance508

Compliance

A11y Machine

Inspect
Image Scan

Inspect
Image Scan

13

SOLUTIONS DELIVERY PLATFORM PIPELINE FRAMEWORK: WHAT?

A Single Organizational Jenkins Pipeline

use_pipeline_template = true

sdp_image_repository = ”…"
sdp_image_repository_credential = ”…"

application_image_repository = ”…"
application_image_repository_credential = ”…"

application_environments{
dev{

short_name = "dev"
long_name = "Development"

}
prod{

short_name = "prod"
long_name = "Production"

}
}

stages{
continuous_integration{

unit_test
static_code_analysis
build
scan_container_image

}
}

libraries{
github_enterprise
sonarqube{

enforce_quality_gate = true
}
docker
twistlock{

url = ”…"
credential = ”…"

}
openshift{

url = “…"
helm_configuration_repository = ”…"
helm_configuration_repository_credential = ”…”
tiller_namespace = ”…"
tiller_credential = ”…"

}
owasp_zap{

merge = true
vulnerability_threshold = "High"

}
slack

}

notifiers{
slack

}

ORGANIZATION CONFIGURATION FILE

*specifies pipeline composition for the agency and determines which configurations a tenant can override

14

SOLUTIONS DELIVERY PLATFORM PIPELINE FRAMEWORK: WHAT?

A Single Organizational Jenkins Pipeline

on_commit{
continuous_integration()

}

on_pull_request to: master, from: feature, {
continuous_integration()
deploy_to preview
parallel “Penetration Test”: { penetration_test() },

“Accessibility Test”: { accessibility_compliance_test() },
“Performance Test”: { performance_test() },
“Functional Test”: { functional_test() }

}

on_merge to: master, {
deploy_to production

}

ORGANIZATION JENKINSFILE

(PIPELINE AS CODE)

15

on_commit{
continuous_integration()

}

on_pull_request to: master, from: feature, {
continuous_integration()
deploy_to preview
parallel “Penetration Test”: { penetration_test() },

“Accessibility Test”: { accessibility_compliance_test() },
“Performance Test”: { performance_test() },
“Functional Test”: { functional_test() }

}

on_merge to: master, {
deploy_to production

}

ORGANIZATION JENKINSFILE

(PIPELINE AS CODE)

pipeline

{

agent
{

label "w indows"
}

environment
{

MAVEN_SHOW_TIME = "-Dor g.slf4j.si mpleLogger.showDate Time=t rue"

MAVEN_FORM AT_TIM E = "-D org.slf4j .simple Logger. dateTi meFormat=EEE. .yyyy-MM-dd.. .HH:mm:ss.SSS ..z"
MAVEN_SUPPRESS_D OWNLOAD_LOG S = "-D org.slf4j .simple Logger. log.org. apache .maven.cli.transfer.Slf4jMave nTransferListe ner=WA RN"

MAVEN_PREVE NT_RECOMPILE = "-D maven.compiler .useIncr ement alCompi lation=false"
MAVEN_OPTS = "-Djav a.awt.headless =true $ {MAVE N_SHOW_TIM E} ${M AVEN_ FORMA T_TIME } ${MA VEN_S UPPRES S_DOWNLOAD _LOGS} "

MAVEN_CLI_OPTS = "--batch-mode --e rrors --fail-fast --show-version ${MAV EN_PREVENT_ RECOM PILE}"

COMMI T_HASH = sh(re turnSt dout: tr ue, scri pt: "git l og -1 --pretty= format: '%H'").t rim()

COMMI T_HASH _SHORT = sh(r eturnSt dout: tr ue, scri pt: "git log -1 --pretty =format :'%h'"). trim()
COMMI T_MESS AGE = sh(retur nStdout: true, script: "git log -1 --pre tty=for mat:'% B'").trim()

COMMI T_COM MITER = sh(ret urnStdout: true , script: "git log -1 --pr etty=format:' %an'").tr im()

}

stages

{
stage("build")

{
steps

{

mvnCompile Node nodeName: "windows", profile: "", branchNames: []
}

}

stage("t est")

{
steps

{
parall el (

"unit ":

{
mv nUnitTe stNode nodeName: "windows", profil e: "", branchNames: []

},

"inte gration-artifacts":

{
mv nIntegr ationTe stNode nodeName: "w indows", profil e: "-Pdocument s,integ rationT estsOnl y", branchNames: ['ma ster']

},
)

}

post

{
alway s

{

jenki nsTest ReportNode nodeName: "windows", profile: "", branchName s: []
}

}
}

stage("deploy")
{

steps

{

parall el (

"qua lity-assurance":
{

mv nSonar QubeNode nodeName: "windows", pr ofile: "", branchNames: ['mast er']
},

"documenta tion":
{

mv nSiteNode nodeName: "windows", pr ofile: "-Penable Update sRepor ts,enabl eJavadocReports", br anchNa mes: ['master']
}

)

}
}

stage("open-source")

{

steps
{

parall el (
"qua lity-assurance":

{

mv nSonar QubeNode nodeName: "windows", pr ofile: "-PopenS ource,sonarCloud", bra nchNa mes: ['master']
},

"arti facts":

{

mv nOpenS ourceReleaseNode nodeName : "windows", profile: " -DskipT ests -PopenSource,documents ", branchName s: ['master']
}

)
}

}

}

post
{

failure

{
mvnEffectivePom nodeName: "windows", pr ofile: "" , branchNames : []

}
}

}

def mvnCompileNode(Ma p args)
{

node("${a rgs.nodeName }")
{

stage("compile")

{
echo "Clean Up..."

delete Dir()

echo "Check Out..."

checkout scm

echo "Commit Hash: $ {env.COMMIT _HASH} "
echo "Commit Hash S hort: ${ env.COMMIT_ HASH_S HORT}"

echo "Commit Messag e: '${e nv.COM MIT_M ESSAG E}'"

echo "Committ er: ${e nv.COM MIT_COMMIT ER}"

if (hasReleaseT ag())
{

echo "Commi t Tags: ' ${env. COMMI T_TAGS }'"

}

echo "Compile Source. .."
sh "mv n $MA VEN_CLI _OPTS test-compile ${ args.pr ofile}"

stash name: "bytecode", includes: "* */targe t/**,** /gener ated/** ", allow Empty: true

}
}

}

def mvnUnitTestNode(Ma p args)

{
node("${a rgs.nodeName }")

{

stage("unit")
{

echo "Clean Up..."
delete Dir()

echo "Check Out..."
checkout scm

echo "Bytecode..."

unstash "bytecode"

sh "find . -name \"*.cl ass\" -exec touch {} \\+ "

try
{

echo "Unit Te st..."

sh "mvn $MA VEN_CLI_OPTS test ${ args.pr ofile}"
}

finally
{

stash name: "unittests", incl udes: "**/targ et/surefire-reports/*,* */targ et/cove rage-re ports/* ", allow Empty: true

}

}
}

}

def mvnInt egrationTestNode(Ma p args)

{
node("${a rgs.nodeName }")

{

stage("i ntegrati on-artifacts")
{

echo "Clean Up..."
delete Dir()

echo "Check Out..."
checkout scm

echo "Bytecode..."

unstash "bytecode"

sh "find . -name \"*.cl ass\" -exec touch {} \\+ "

try
{

echo " Integra tion Te st..."

if (arg s.branchNames.contai ns(env. BRANCH _NAM E) || ha sReleaseTag())

{
sh "mvn $M AVEN_ CLI_OPT S deploy ${arg s.profil e}"

}

else
{

sh "mvn $M AVEN_ CLI_OPT S instal l ${arg s.profile }"
}

sh "mvn $MA VEN_CLI_OPTS animal -sniffer:check $ {args.profile}"
sh "mvn $MA VEN_CLI_OPTS enforcer:enfor ce ${ar gs.profi le}"

}
finally

{

stash name: " integra tiontests", incl udes: "**/targ et/failsafe-reports/*,* */targe t/cover age-reports/*", allow Empty: true
}

}
}

}

def mvnOpenSour ceRelea seNode (Map a rgs)

{

node("${a rgs.nodeName }")
{

stage("r elease-artifacts")
{

if (hasReleaseT ag())

{
echo "Clean Up..."

delet eDir()

echo "Check Out..."

check out scm

echo "Bytecode..."
unsta sh "byt ecode"

sh "find . -na me \"*.class\" -exec touch {} \\ +"

echo "Open S ource Release for '${e nv.COM MIT_T AGS}'"

sh "mvn $MA VEN_CLI_OPTS deploy ${args .profile }"

}

else
{

echo "Skip Open Source SNAPSHOT for '${ env.COMMIT_ MESSA GE}'."
}

}

}
}

def jenkinsTestRe portNode(Map args)
{

node("${a rgs.nodeName }")
{

stage("t est-report")

{
echo "Clean Up..."

delete Dir()

echo "T estresults..."

unstash "unitt ests"
unstash "integ rationt ests"

junit te stResul ts: "**/target/*-repor ts/*", a llowEmptyResults: true

}

}
}

def mvnSonarQubeNode(Map ar gs)

{

node("${a rgs.nodeName }")

{
stage("sonarqube")
{

if (args. branchNames. contains(env.BRANCH_ NAME) || hasRelease Tag())

{

echo "Clean Up..."
delet eDir()

echo "Check Out..."

check out scm

echo "Bytecode..."
unsta sh "byt ecode"

sh "find . -na me \"*.class\" -exec touch {} \\ +"

echo "Testresults..."
unsta sh "unit tests"
unsta sh "inte grationtests"

echo "Dependency Check..."

sh "mvn $MA VEN_CLI_OPTS org.owasp:de pendency-check-mave n:aggre gate ${ args.pr ofile}"

echo "Quality Assura nce..."

sh "mvn $MA VEN_CLI_OPTS sonar:sonar $ {args.pr ofile}"

}

else
{

echo "Skip SonarQube for br anch '$ {env.BRANCH_ NAME} '."

}

}

}
}

def mvnSit eNode(Map ar gs)
{

node("${a rgs.nodeName }")

{

stage("si te")

{
if (args. branchNames. contains(env.BRANCH_ NAME))
{

echo "Clean Up..."

delet eDir()

echo "Check Out..."

check out scm

echo "Bytecode..."

unsta sh "byt ecode"
sh "find . -na me \"*.class\" -exec touch {} \\ +"

echo "Testresults..."

unsta sh "unit tests"

unsta sh "inte grationtests"

echo "Site De ployme nt..."
sh "mvn $MA VEN_CLI_OPTS site ${ args.pr ofile}"

sh "find . -type f -na me \"sonar.html \" | xar gs --no-run-if-e mpty se d -i \"s/ \\/proj ect\\/index\\// \\/dashboard\\ /index\ \//g\""

sh "mvn $MA VEN_CLI_OPTS site:de ploy ${ args.pr ofile}"
}

else
{

echo "Skip Si te Depl oyment for bra nch '${ env.BRA NCH_NAME}'. "

}
}

}
}

def mvnEffectivePom(Ma p args)
{

node("${a rgs.nodeName }")
{

stage("pom")

{
echo "Clean Up..."

delete Dir()

echo "Check Out..."

checkout scm

echo "E ffective POM... "
sh "mv n $MA VEN_CLI _OPTS help:effective-pom ${a rgs.profile}"

}

}
}

def boolea n hasRe leaseTa g() {
if (!env.COMMIT _TAGS)

{
env.COMMIT_T AGS = sh(retur nStdout: true, script: "git show-ref --t ags -d | grep ' ^${COMMIT_H ASH_S HORT}' | sed -e 's,.* re fs/tags/ ,,' -e 's/ \\^{}//' ").trim()

}

return (e nv.COM MIT_T AGS != "" && e nv.COM MIT_M ESSAG E.contai ns("[ma ven-rel ease-pl ugin] pr epare r elease"))

}

TYPICAL JENKINSFILE

COMPARE AND CONTRAST

16

libraries{
owasp_zap{

target = “https://example.com”
}

}
steps{

unit_test{
image = “maven”
command = “mvn clean verify”

}
}

libraries{
owasp_zap{

target = “https://example.com”
}

}
steps{

unit_test{
image = “maven”
command = “mvn clean verify”

}
}

SOLUTIONS DELIVERY PLATFORM PIPELINE FRAMEWORK: WHAT?

A Single Organizational Jenkins Pipeline

libraries{
owasp_zap{

target = “https://example.com”
}

}
steps{

unit_test{
image = “maven”
command = “mvn clean verify”

}
}

TENANT CONFIGURATION FILE

17

SOLUTIONS DELIVERY PLATFORM PIPELINE FRAMEWORK: WHAT?

Govern Define Compose Execute

SHARED
LIBRARIES

ORGANIZATION
CONFIGURATION FILE

TENANT
CONFIGURATION FILE

SINGLE DEVSECOPS
PIPELINE

PUTTING IT ALL
TOGETHER

18

SOLUTIONS DELIVERY PLATFORM PIPELINE FRAMEWORK: HOW?

2 Differentiators

• Contributed back to the Jenkins project with a bug

fix enabling more dynamic behavior

• https://github.com/jenkinsci/workflow-cps-plugin/pull/204

• Modifications to the Pipline Multibranch: with

Defaults plugin enabling the use of a single

Jenkinsfile across an entire GitHub Organiization

• Contribution back to open source pending

https://github.com/jenkinsci/workflow-cps-plugin/pull/204

19

HOW SDP ACCELERATES ATO

20

THE HYGIEIA DASHBOARD PROVIDES METRICS AND VISIBILITY INTO THE
EFFECTIVENESS OF THE PROCESS, ENVIRONMENTS, AND OPERATIONS

OUR MODERN SD APPROACH – DEVSECOPS – SDP [DASHBOARD] [SECURE PIPELINE] [PLATFORM]

Deployments: Feedback on each deployment
• What artifacts, at what version, are running where

Value Stream Flow Feedback on pace and health of multiple-team delivery
• How close to delivering the next version
• Is delivery speeding up or slowing down
• At what stage(s) are the bottlenecks

Team Dashboard
Provides deep measures across the end-to-end app delivery lifecycle
• Feature Backlog status,
• code change activity,
• current code quality,
• build success,
• environment deployments

Dashboard can be configured to integrate organizationally specific tools and to develop
custom new features

WE’RE HIRING --
BOOZALLEN.COM/APPLY

