
Saga: The new era of transactions in a
microservices architecture

Giovanni Marigi - Senior Middleware Consultant
Mauro Vocale - Solution Architect

BOSTON, MA | MAY 7-9, 2019

Microservices

The microservice architecture is the main trend in
information technology and we learned a lot about it
during these years ...

What are Microservices?

“…an approach to developing a single application as a
suite of small services, each running in its own process
and communicating with lightweight mechanisms,
often an HTTP resource API.”

 Martin Fowler

• Fast to develop, easier to maintain and understand
• Starts faster, speeds up deployments
• Fault isolation
• Services can be scaled independently
• Deltas and patches can be applied to each microservice individually
• Local changes can be deployed easily
• Flexible choice of technology
• Security can be applied to each microservice as opposed to the whole system

in a blanket approach

 MICROSERVICES ADVANTAGES

• Additional architectural complexity of distributed systems
○ Maintaining strong consistency is extremely difficult
○ Testing a distributed system is difficult
○ Requires a shift in coding paradigm:

Change in approach to application architecture design and testing
• Significant operational complexity. Requires a high degree of automation

○ Deployments require coordination and rollout plan

 MICROSERVICES DISADVANTAGES

MICROSERVICES FRAMEWORKS

There are many ways to build a microservice

 Microservices’ilities

MyService

Monitoring

Tracing

API

Discovery

Invocation

Resilience

Pipeline

Authentication

Logging Elasticity

Platform and frameworks
cover a lot … but not all ...

MICROSERVICES DILEMMA: How to handle transactions?

SAGA! 2PC, XA, BULK
BATCH!

Microservices and transactions
 You’ve successfully decomposed your monolithic
 application into several microservices.

 Every microservice has its own state and a local store (RDBMS, NoSQL, file store, ...)

 Microservices can emit events when a state changes.

 Microservices can react to events.

But you still want that a business process spanning several services to be
consistent and correct regardless of the level of decomposition of your
application.

Why distributed transactions don’t work
Traditional distributed transactions are implemented using a two-phase commit,
briefly 2PC.

Why can’t we use 2PC in microservices architecture?

● You don’t have a single shared store anymore, every service has its own data
store (micro-db)

● A microservices architecture involves many parties, realized using different
technologies that adhere to different specifications: 2PC implicitly assumes
closely coupled environment

● Synchronization and isolation reduces performance and scalability.
● A business function potentially lasting for hours or days: lock strategy doesn't

work well in long duration activities

Distributed transactions

Ticket Service Insurance Service

2PC: a magic box

XA resource XA resource

book a ticket

book a ticket

Simple rule:
2PC would try to reserve both the ticket and the insurance
at the same time. If it doesn’t succeed, none of them will be
booked.

Microservices: eventual consistency

Consistency states that the entire software system should be in a valid state.

2PC guarantees the consistency with a pessimistic approach; all the changes must be
done at the same time or rollback.

Microservices architectures at the opposite guarantee the consistency with a more
relaxed approach. The state of the entire system can’t be valid at any time but at the
end of the business transaction. The system is eventually consistent.

Ticket service and Insurance service will try to book independently. In case of failure in
one of the two, the other one will be canceled.

Eventual consistency is not easy achieve and there is no a magic box out there.

Saga Pattern

Le Radeau de la Méduse -
Théodore Géricault, 1818-19

Saga Pattern: overview
Saga is the de facto solution to guarantee consistency in a microservices architecture.

Saga is not a new pattern [1] and it can be applied also in traditional monolithic
architectures.
“For specific applications, it may be possible to alleviate the problems by relaxing the
requirement that an LLT be executed as an atomic action. In other words, without
sacrificing the consistency of the database, it may be possible for certain LLTs to release
their resources before they complete, thus permitting other waiting transactions to
proceed”

Saga usually performs better than distributed transactions and doesn’t require all the
services to be available at the same time.

Developers need to take care of the implementation of the Saga.

[1]
https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

https://www.cs.cornell.edu/andru/cs711/2002fa/reading/sagas.pdf

Transaction ACID Properties

● Atomicity: this property guarantees that each transaction is treated as a single "unit", which

either succeeds completely, or fails completely

● Consistency: this property is related to the logical consistency of the data. When a new

transaction starts, it must ensure that the data maintains a state of logical consistency,

regardless of the final outcome

● Isolation: this property ensures that concurrent execution of transactions leaves the database

in the same state that would have been obtained if the transactions were executed

sequentially

● Durability: this property guarantees that all of the changes made during a transaction, once it

is committed, it must be persistent and definitive, even in the case of system crashes

Saga Pattern: ACD
Saga is a series of local transactions; every local transaction happens within the
boundary of the (micro)-service.

Saga has ACD characteristics, distributed transactions ACID characteristics [1]; the
real challenge is to deal with the lack of isolation (I) in an elegant and effective way.

A transaction in a microservice architecture should be eventually consistent.

Compensations are the actions to apply when a failure happens to leave the system in
an inconsistent state.

Compensations actions must be idempotent; they might be called more than once.

[1]
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overvi
ew/acid.html

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overview/acid.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.4.0/product-overview/acid.html

Saga Pattern: the lack of I
Lack of isolation causes:

● Dirty reads: a transaction read data from a row that is currently modified by another
running transaction

● Lost updates: two different transactions trying to update the same “data”. One of
them doesn’t see the new value when trying to update

● Non-repeatable reads: re-reads of the same record (during an inflight transaction)
don’t produce the same results

A Saga should take actions to minimize the impact of lack of isolation.

How you implement this set of countermeasures (against isolation anomalies)
determine how good is a microservice.

Several techniques available: semantic lock, design commutative operations, ...

Saga Pattern: semantic lock
*_PENDING states, saved into the local microservice store, indicate that a Saga
instance is in progress and it is manipulating some data needing an isolation level (for
example a customer’s account)

If another Saga instance starts, it must evaluate the existing *_PENDING states and
pay attention on them.

Some strategies when detecting PENDING states:

● The Saga instance will fail.

● The Saga instance will block until the lock is released.

Saga Pattern

Book
ticket

Book
ticket
insurance

Payment

Cancel
ticket

Cancel
ticket insurance

compensation

Book
ticket

Book
ticket
insurance

Payment

Ticket Saga

Ticket Saga (Payment Error)

book a ticket

book a ticket

Payment
error

Saga Choreography vs Orchestration
How to implement a Saga and how to coordinate the execution of local transactions within
a microservice?

Two approaches:

● Choreography: the (micro)-service is responsible for emitting events at the end
of its local transaction. The event triggers the start of new local transactions in
(micro)-services subscribed to this event.
The (micro)-service must provide the logic to compensate.

● Orchestration: there is a central coordinator (a stateful entity) that triggers the
local transactions in (micro)-services. The coordinator has the logic to
compensate and maintain the status of the global transaction.

Saga Choreography
Every (micro)-service is responsible for sending events and subscribing to events.
It must define a strategy to handle the events.

Decentralized approach, all the systems work independently and they cooperate for a
common goal (without having knowledge on what is it).

Participants cannot be available during the execution of a Saga instance, no SPOF.

Events are sent to a message broker system (Apache Kafka, ActiveMQ, ...) and they
contain a correlation-id

It works if you have a limited number of services participating in the transaction
(basic sagas)

Easy to code but difficult to govern it. It’s difficult to monitor and reconstruct the
overall status of a Saga.

Saga Choreography

Ticket Service

Insurance
Service

Payment
Service

Message Broker System

PAYMENT_ACCEPTED event
must be handled by
Insurance Service
Ticket Service

ticket table

insurance table

payment table

TICKET_CREATED
ORDER_CREATED

ticket topic

order topic

payment topic

PAYMENT_ACCEPTED
TICKET_BOOKED_PENDING
TICKET_BOOKED

INSURANCE_BOOKED_PENDING
INSURANCE_BOOKED

PAYMENT_CONFIRMED

Saga Choreography

Ticket Service

Insurance
Service

Payment
Service

Message Broker System

PAYMENT_REFUSED event
must be handled by
Insurance Service
Ticket Service

ticket table

insurance table

payment table

TICKET_CREATED
ORDER_CREATED

ticket topic

order topic

payment topic

PAYMENT_REFUSED
TICKET_BOOKED_PENDING
TICKET_PAYMENT_REFUSED

INSURANCE_BOOKED_PENDING
INSURANCE_PAYMENT_REFUSED

PAYMENT_CONFIRMED

Saga Choreography

One approach could be the usage of the outbox pattern:
● Create a database table for the events.
● Atomically update the internal microservice database and insert a record into

the table for the events.

The Change Data Capture Component (Connector) reads the table for the events and
publish the events to the message broker.
https://github.com/debezium/debezium-examples/tree/master/outbox

ticket table

Ticket Service

ticket events table

update ticket state
ticket events topicChange Data

Capture

transactional

We don’t want to lose any events and leave the system inconsistent.
How to atomically update the store and send the event?

https://github.com/debezium/debezium-examples/tree/master/outbox

Saga Choreography

Other approaches:

● Event Sourcing: services only store changing-state events using an
Event Store. Event Store is the events database and also behaves as a message
broker.
The state of an entity is reconstructed by a service, replaying the events from
the Event Store.

● Database transaction log mining: a process extracts the database updates using
the database transaction log and publish them to the message broker.

We don’t want to lose any events and leave the system inconsistent.
How to atomically update the store and send the event?

Saga Choreography
Services must discard duplicate events.

A message log table can be used to track all events already processed.

The correlation-id (event-id) can be used to find the event into message log table.

Saga Choreography
Let’s imagine that we don’t receive a PAYMENT_ACCEPTED or
PAYMENT_REFUSED event.

Are we sure that the Payment Service authorized the operation?
How long should we wait before compensating (timeout)?

The real limit of choreography is the complexity in implementing the logic
to coordinate the overall business transaction.

The lack of a Saga Coordinator is the real limit of the Saga Choreography
approach.

Saga Choreography
a custom solution with Quarkus, Debezium and Kafka

● Ticketing Service, a java native ms with quarkus
● Insurance Service, a java native ms with quarkus
● Payment Service, a java native ms with quarkus
● Debezium is the change data capture:

streams events from event database to Kafka
● Debezium also sends data to Elasticsearch (Kibana)
● Apache Kafka as message broker
● Run all on OpenShift
● Apache Kafka on OpenShift using AMQ Streams
● Some Prometheus and Grafana stuff
● Some images from quay.io

https://github.com/redhat-italy/rht-summit2019-saga

https://github.com/redhat-italy/rht-summit2019-saga

Why Quarkus?
Supersonic Subatomic Java

The new era of Java application, a 100% cloud native stack

Super fast boot time, low RSS memory (not only java heap)

A lot of well known libraries are already ported to Quarkus

Ticket Service

Insurance
Service

Payment
Service

AMQ Streams

ticket topic

order topic

payment topic

quarkus
eclipse-microprofile

ticket table ticket event table

insurance event table insurance table

payment event table payment table

Postgres

Postgres

Postgres

Ticket Connector

debezium-kafka-connect

quarkus
eclipse-microprofile

quarkus
eclipse-microprofile

debezium-kafka-connect

Insurance Connector

debezium-kafka-connect

Payment Connector

Saga Choreography
a custom solution with Quarkus, Debezium and Kafka

ElasticSearch +Kibana

 DEMO

Saga - Choreography

https://www.youtube.com/watch?v=7cLbRIc3TWU

Saga Orchestration
Saga is a series of local transactions; every local transaction happens within the
boundary of the (micro)-service.

In an orchestration implementation the SAGA is handled by a Saga Execution
Coordinator.

This coordinator service is responsible for centralizing the saga’s decision making and
sequencing business logic.

It's a trusted third party framework designed to specifically cater to environments
where failures can happen.

It will be part of the Microprofile specification: the reaction to the slow pace of Java EE
development.

What is Eclipse MicroProfile?

An open-source community specification for Enterprise Java
microservices

A community of individuals, organizations, and vendors
collaborating within an open source (Eclipse) project to bring
microservices to the Enterprise Java community

Community - individuals, organizations, vendors

Current MicroProfile implementations

https://wiki.eclipse.org/MicroProfile/Implementation
http://wildfly-swarm.io/
https://openliberty.io/
https://hammock-project.github.io/
https://www.tomitribe.com/
https://github.com/oracle/helidon

JAX-RS 2.1JSON-P 1.1CDI 2.0

Config 1.3

Fault
Tolerance

2.0

JWT
Propagation

1.1

Health
Check 1.0Metrics 1.1

Open
Tracing 1.3 Open API 1.1 Rest Client

1.2

JSON-B 1.0

MicroProfile 2.2

Eclipse MicroProfile 2.2 (Feb 2019)

= Updated
= No change from last release (MicroProfile 2.1)

= New

Eclipse MicroProfile 3.0 (June 2019)

JAX-RS 2.1JSON-P 1.1CDI 2.0

Config 1.3

Fault
Tolerance

2.0

JWT
Propagation

1.1

Health
Check 2.0Metrics 2.0

Open
Tracing 1.3 Open API 1.1 Rest Client

1.2

JSON-B 1.0

MicroProfile 3.0

= Updated
= No change from last release (MicroProfile 2.2)

= New

Outside

Concurrency
1.0

LRA 1.0

Reactive
Streams

Operators 1.1

Umbrella

GraphQL 1.0

Microprofile Long Running Action
Specification that defines the behaviour of SAGA orchestration.

MicroProfile LRA proposal in progress.

Provides an “all-or-nothing” property to work that is conducted within its scope.

Guarantees shared state is protected from conflicting updates from multiple users.

Removes the Isolation (locking) ACID property. It uses the BASE (Basically Available,
Soft state, Eventual consistency) approach.

Eventual Consistency where each resource will move from a valid state to another.

Saga Orchestration Model

Book
Ticket

Book
Ticket

Insurance

TRANSACTION MANAGER
LRA COORDINATOR

Joins SAGA

Complete /
Compensate

Joins SAGA

Complete /
Compensate

Payment

Joins SAGA

Complete /
Compensate

Business Flow

Saga Orchestration - Complete Phase

Book
Ticket

Book
Ticket

Insurance
Payment

Confirm
Book Ticket
Insurance

Confirm
Book Ticket

Final
State

Initial
State

@Complete

TRANSACTION MANAGER
LRA COORDINATOR

Joins SAGA Joins SAGA

Send
Complete to
coordinator@Complete

Joins SAGA

Saga Orchestration - Compensation Phase

Book
Ticket

Book
Ticket

Insurance
Payment

Cancel
Book Ticket
Insurance

Cancel
Book Ticket

Final
State

Initial
State

@Compensate

TRANSACTION MANAGER
LRA COORDINATOR

Joins SAGA Joins SAGA

Send
Compensate
to coordinator@Compensate

Joins SAGA

Saga Orchestration
with Narayana

3 microservices with rest endpoints

● Ticketing Service /ticket
● Insurance Service /insurance
● Payment Service /payment
● Narayana LRA coordinator
● Run all the stuff on OpenShift
● Some Prometheus and Grafana stuff

https://github.com/redhat-italy/rht-summit2019-saga
Eclipse MicroProfile Community

https://github.com/redhat-italy/rht-summit2019-saga

 DEMO

Saga - Orchestration

https://youtu.be/arEPILK6yCA

Saga Orchestration
with Apache Camel

● API Gateway: a sample camel app that is the main entry point
● Flight Service: a service that sells flights
● Train Service: a service that sells train tickets
● Payment Service: a service that allows both services to request

payments
● Narayana LRA coordinator

https://github.com/nicolaferraro/camel-saga-quick
start

https://github.com/nicolaferraro/camel-saga-quickstart
https://github.com/nicolaferraro/camel-saga-quickstart

Saga as state machines
Saga is essentially a state machine.

A BPMN process can represents well the workflow behind a Saga flow.

A business process executes the steps required.

A business process talks to the services.

A business process handles the failure executing compensating steps.

Easy to visualize the progress of a Saga instance.

Saga Orchestration
with jBPM

● A demo showing and IT Hardware Order application build on the case
management features and technology of
Red Hat Process Automation Manager 7.x

● The process implements the Saga pattern via standard BPMN2 compensation
flows, showing the powerful concepts and ease of semantical expression that
Red Hat Process Automation Manager 7 brings to a modern microservices
architecture.

● The order in the order service is cancelled via a BPMN2 compensation flow
when the order time’s out.

https://github.com/jbossdemocentral/rhpam7-order-it-hw-demo

https://github.com/jbossdemocentral/rhpam7-order-it-hw-demo

Credits
Ugo Landini - Principal Solutions Architect @ Red Hat

Fabio Massimo Ercoli - Senior Software Engineer - Hibernate & Data Platform @ Red Hat

Nicola Ferraro - Senior Software Engineer - Fuse @ Red Hat

Andrea Spagnolo - Cloud Consultant @ Red Hat

Stefano Linguerri - Architect @ Red Hat

Rigel Di Scala - Architect @ Red Hat

Luigi Fugaro - Architect @ Red Hat

Noel O’Connor - Senior Principal Consultant @ Red Hat

DISCOVERY
SESSION THEATER

7:45 - 8:30 PM - 4 ways to
jump start an open source
& agile automation culture

TUESDAY

WEDNESDAY

THURSDAY

10:15-11:00 AM -
Day-in-the-Life: Designing
Software for Open
Innovation Labs

11:15-12:00 PM - How
Volkswagen used microservices
& automation to develop
self-service solutions

12:15-1:00 PM - Container
adoption at scale:
Metrics-driven framework and
other lessons learned

3:15-4:00 PM - The road to
RHEL 8: Best practices for
optimizing your operating
system

4:15-5:00 PM - Adoptando
RHEL 8: Las mejores
practicas para optimizar tu
Sistema Operativo

5:15-6:00 PM - A DevOps
survival guide: Small
changes lead to big results

6:15-7 PM - Digital Nudge:
How automation, machine
learning, A.I., and more
shape our digital decisions

10:45-11:30 AM - OpenShift
DevSecOps: Making your
enterprise more secure for
tomorrow, today

11:45-12:30 PM - To the
Edge and Beyond: Network
Automation for
Telecommunications

12:45-1:30 PM - People first, digital
second: Using open principles to
drive transformation at Heritage
Bank

1:45-2:30 PM - Monoliths in
OpenShift: Application
onboarding strategies for
containers

