

Emily Freeman and Nathen Harvey

97 Things Every Cloud Engineer
Should Know

Collective Wisdom from the Experts

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10847-2

[LSI]

97 Things Every Cloud Engineer Should Know

by Emily Freeman and Nathen Harvey

Copyright © 2021 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://oreilly.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock Indexer: Potomac Indexing, LLC

Development Editor: Sarah Grey Interior Designer: David Futato

Production Editor: Christopher Faucher Cover Designer: Randy Comer

Copyeditor: Sharon Wilkey Illustrator: O’Reilly Media, Inc.

Proofreader: Rachel Head

December 2020: First Edition

Revision History for the First Edition

2020-12-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492076735 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every Cloud Engi‐

neer Should Know, the cover image, and related trade dress are trademarks of O’Reilly Media,

Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s

views. While the publisher and the authors have used good faith efforts to ensure that the

information and instructions contained in this work are accurate, the publisher and the

authors disclaim all responsibility for errors or omissions, including without limitation respon‐

sibility for damages resulting from the use of or reliance on this work. Use of the information

and instructions contained in this work is at your own risk. If any code samples or other tech‐

nology this work contains or describes is subject to open source licenses or the intellectual

property rights of others, it is your responsibility to ensure that your use thereof complies with

such licenses and/or rights. This work is part of a collaboration between O’Reilly and Red Hat.

See our statement of editorial independence.

Black Lives Matter.

Table of Contents

Preface. xvii

Part I. Fundamentals

1. What Is the Cloud?. 2

Nathen Harvey

2. Why the Cloud?. 4

Nathen Harvey

3. Three Keys to Making the Right Multicloud Decisions. 6

Brendan O’Leary

4. Use Managed Services—Please. 8

Dan Moore

5. Cloud for Good Should Be Your Next Project. 10

Delali Dzirasa

6. A Cloud Computing Vocabulary. 12

Jonathan Buck

7. Why Every Engineer Should Be a Cloud Engineer. 15

Michelle Brenner

vii

8. Managing Up: Engaging with Executives on the
Cloud. 17

Reza Salari

Part II. Architecture

9. The Future of Containers: What’s Next?. 20

Chris Hickman

10. Understanding Scalability. 23

Duncan Mackenzie

11. Don’t Think of Services, Think of Capabilities. 25

Haishi Bai

12. You Can Cloudify Your Monolith. 27

Jake Echanove

13. Integrating Microservices in Cloud Native
Architecture. 29

Kasun Indrasiri

14. Containers Aren’t Magic. 32

Katie McLaughlin

15. Your CIO Wants to Replatform Only Once. 34

Kendall Miller

16. Practice Visualizing Distributed Systems. 36

Kim Schlesinger

17. Know Where to Scale. 39

Lisa Huynh

18. Serverless Bad Practices. 41

Manasés Jesús Galindo Bello

19. Getting Started with AWS Lambda. 43

Marko Sluga

Table of Contentsviii

20. It’s OK if You’re Not Running Kubernetes. 46

Mattias Geniar

21. Know Thy Topology. 48

Nikhil Nanivadekar

22. System Fundamentals Will Still Bite You. 51

Noah Abrahams

23. Cloud Processing Is Not About Speed. 53

Rustem Feyzkhanov

24. How Serverless Simplifies the Developer Experience. . . . 55

Wietse Venema

Part III. Migration

25. People Will Expect Things—Help Them Expect Right. . . . 59

Dave Stanke

26. Failing a Cloud Migration. 61

Lee Atchison

27. Optimizing Processes for the Cloud: Patterns and
Antipatterns. 63

Mike Kavis

28. Why the Lift-and-Shift Model Is Unlikely to Succeed. . . . 66

Mike Silverman

Part IV. Security and Compliance

29. Security at Cloud Native Speed. 69

Chris Short

30. Essentials of Modern Cloud Governance. 72

Derek Martin

Table of Contents ix

31. Know Where the Secrets Are Kept and How. 75

Emmanuel Apau

32. Don’t SSH into Production. 78

Fernando Duran

33. Identity and Access Management in Cloud
Computing. 80

Isuru J. Ranawaka

34. Treat Your Cloud Environment as if It Were On
Premises. 83

Iyana Garry

35. You Can’t Get Information Security Right Without
Getting Identity Right. 85

Sarah Cecchetti

36. Why Are Good AWS Security Policies So Difficult?. 87

Stephen Kuenzli

37. Side Channels and Covert Communications in Cloud
Environments. 90

Will Deane

Part V. Operations and Reliability

38. When in Doubt, Test It Out. 94

Dan Moore

39. Never Take a Single Region Dependency. 96

Derek Martin

40. Test Your Infrastructure with Game Days. 98

Fernando Duran

41. Improve Your Monitoring with Visualizations and
Dashboards. 101

Jason Katzer

Table of Contentsx

42. REvisiting the Rs of SRE. 103

J. Paul Reed

43. The Power of Vulnerability. 105

Ken Broeren

44. The Basics of Service-Level Objectives. 107

Kit Merker, Brian Singer, and Alex Nauda

45. Oh, No: No Logs. 110

Laura Santamaria

46. Use Checklists to Manage Risk. 112

Lisa Huynh

47. Everything Is a DNS Problem: How to (Im)prove. 114

Michael Friedrich

48. What’s the Time?. 116

Nikhil Nanivadekar

49. Monitor Your Model Dependencies!. 118

Ori Cohen

50. There’s No Such Thing as a Development
Environment. 120

Peter McCool

51. Incident Analysis and Chaos Engineering:
Complementary Practices. 122

Ryan Frantz

52. How Should I Organize My AWS Accounts?. 125

Stephen Kuenzli

53. Resiliency and Scalability Are Key. 128

Tidjani Belmansour

Table of Contents xi

54. Monitor, You Will. 130

Tidjani Belmansour

55. Reliable Systems Don’t Happen by Accident. 133

Zach Thomas

56. What Is Toil, and Why Are SREs Obsessed with It?. 135

Zachary Nickens

Part VI. Software Development

57. The Cloud Doesn’t Care if It Works on Your Machine. . . 138

Alessandro Diaferia

58. KISS It. 140

Chris Proto

59. Maintaining Service Levels with Feature Flags. 142

Dawn Parzych

60. Working Upstream. 145

Eric Sorenson

61. Do More with Less. 148

Ivan Krnić

62. Everything Is Just Ones and Zeros. 150

Lukas Ruebbelke

63. Be Prepared to Repeat. 152

Ricardo Miranda

64. Your Greatest Products Are Not the Applications and
Services You Produce. 154

Ryan Bell

65. Avoid Big Rewrites. 156

Simon Aronsson

Table of Contentsxii

66. Lean QA: The QA Evolving in the DevOps World. 158

Theresa Neate

67. Source Code Management for Software Delivery. 161

Tiffany Jachja

Part VII. Cloud Economics and Measuring Spend

68. FinOps: How Cloud Finance Management Can Save
Your Cloud Program from Extinction. 165

Deepak Ramchandani Vensi

69. How Economies of Scale Work in the Cloud. 168

Jon Moore

70. Managing Network Transit Costs in the Cloud. 171

Ken Corless

71. Managing the Cloud Migration Cost Spike. 173

Manjeet Dadyala

72. Damn It, Jim! I’m a Cloud Engineer, Not an
Accountant!. 175

Michael Winslow

73. Effectively Monitoring Cloud Services Requires
Planning. 177

Scott Pantall

Part VIII. Automation

74. Principles, Patterns, and Practices for Effective
Infrastructure as Code. 180

Adarsh Shah

75. Red, Green, Refactor for Infrastructure. 183

Annie Hedgpeth

Table of Contents xiii

76. Automate or Not-o-Mate?. 185

Judy Johnson

77. Beyond the Portal: Manage Your Cloud with the CLI. . . 187

Marcello Marrocos

78. Treat Your Infrastructure like Software. 190

Zachary Nickens

Part IX. Data

79. So You Want to Migrate Oracle Database into AWS
Cloud?. 193

Asha Kalburgi

80. DataOps: DevOps for Data Management. 196

Banjo Obayomi

81. Data Gravity: The Importance of Data Management in
the Cloud. 198

Geoff Hughes

Part X. Networking

82. Even in the Cloud, the Network Is the Foundation. 202

David Murray

83. Networking First. 204

Derek Martin

84. Handling Network Failures in the Cloud. 206

Shayon Mukherjee

Part XI. Organizational Culture

85. Silos by Any Other Name. 209

Brittany Woods

Table of Contentsxiv

86. Focus on Your Team, Not on the Cost. 211

Guillaume Blaquiere

87. Cloud Engineering Is About Culture, Not Containers. . . 213

Holly Cummins

88. The Importance of Keeping Working Systems
Working. 215

Jan Urbański

89. Effectively Navigating Organizational Politics. 217

Joshua Zimmerman

90. The Cloud Is Not About the Cloud. 220

Ken Corless

91. The Cloud Is Bigger than IT: Enterprise-Wide Training
Strategies. 222

Mike Kavis

92. Systems Thinking and the Support Pager. 224

Theresa Neate

93. Curating a DevOps Culture and Experience. 226

Tiffany Jachja

Part XII. Personal and Professional Development

94. Read the Documentation—Then Reread It. 230

Jennine Townsend

95. Stay Curious. 232

Laziz Turakulov

96. Empathy as Code. 234

Nirmal Mehta

97. From Zero to Cloud Engineer in Less Than a Year. 236

Rachel Sweeney

Table of Contents xv

Contributors. 238

Index. 271

Table of Contentsxvi

Preface

Ideas about cloud computing have been around since at least the 1960s. Our

modern understanding of the cloud can be traced back to about 2006, when

Amazon first launched Elastic Compute Cloud (EC2). The rise and adoption

of cloud technologies has changed the shape of our industry and our global

society. The cloud has made getting started less expensive and growing to

global scale feasible, and is helping turn every organization into a technology

organization—or at least an organization that uses technology as a strategic

enabler of delivering value.

A cloud engineer is, broadly defined, someone who creates, manages, oper‐

ates, or configures systems running in the cloud. This could be a system

administrator responsible for building base images, a software developer

responsible for writing applications, a data scientist building machine learn‐

ing models, a site reliability engineer responding to pages when things go

awry, and more. In some organizations, all of those functions are handled by

one single human; in others, hundreds of people may be in each one of those

roles.

This book is a collection of articles from a diverse set of professional cloud

engineers. We have authors from around the world. Some are early in their

cloud journeys, and others have decades of experience. Each and every

author brings their own perspective and experience to the article that they’ve

shared as part of this book. Our intent is to help you find one, two, or maybe

even ninety-seven things that inspire you to dig deeper and expand your

own career. Just as the cloud has many facets, this book has many types of

articles for you to check out. Start with some cloud fundamentals, and then

read more about software development approaches in the cloud. Or start

with a couple of articles about how to improve your organization, then dig

into new approaches to operations and reliability. It really is up to you!

xvii

This book was written in 2020, a year marked by a global pandemic, an

amplification of and broader awakening to the injustices of systemic racism,

and many other changes that will have an effect on generations to come. The

events of this year have touched every one of us on a personal level. Compa‐

nies and organizations are not immune to these events either: 2020 saw some

companies experience explosive growth, while others had to face their swift

demise. The cloud has played a role in all of these things too—whether pro‐

viding new ways for us to connect while remaining socially distant, rapidly

spreading information and misinformation, or providing scientists the tech‐

nology required for testing, tracing, and learning more about a pernicious

virus.

We would like to thank the authors of each article. They have generously

shared their insights and knowledge in an effort to inform and inspire as you

continue your own journey as a cloud engineer. Use this book to spark a

conversation among cloud engineers, connect on a human level, and learn

from one another.

Enjoy the book!

— Nathen Harvey and Emily Freeman

Prefacexviii

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided

technology and business training, knowledge, and

insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and

expertise through books, articles, and our online learning platform.

O’Reilly’s online learning platform gives you on-demand access to live train‐

ing courses, in-depth learning paths, interactive coding environments, and a

vast collection of text and video from O’Reilly and 200+ other publishers.

For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the

publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any

additional information. You can access this page at https://oreil.ly/97-things-

cloud-engineers.

Email bookquestions@oreilly.com to comment or ask technical questions

about this book.

Visit http://oreilly.com for news and information about our books and

courses.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface xix

PART I

Fundamentals

What Is the Cloud?
Nathen Harvey

Before you get too deep into the articles in this book, let’s establish a com‐

mon understanding of the cloud.

Wikipedia says that cloud computing is “the on-demand availability of com‐

puter system resources, especially data storage (cloud storage) and comput‐

ing power, without direct active management by the user.” The term is

generally used to describe datacenters available to many users over the inter‐

net.

At its most basic level, the cloud is essentially a datacenter that you access

over the internet. However, viewing the cloud as “someone else’s datacenter”

does not really allow you or your team to take full advantage of all that the

cloud has to offer.

The National Institute of Standards and Technology (NIST) defines the

cloud model in “SP 800-145: The NIST Definition of Cloud Computing”.

This publication covers the essential characteristics of cloud computing. It’s

a quick read and well worth your time.

NIST outlines five essential characteristics of the cloud model:

On-demand self-service

Cloud resources of all varieties—compute, storage, databases, container

orchestration platforms, machine learning, and more—are available at

the click of a button or by calling an API. As a cloud engineer, you

should not need to call someone, open a ticket, or send an email to pro‐

vision, access, and configure resources in the cloud.

Broad network access

As a cloud engineer, you should be able to utilize the self-service capa‐

bilities of the cloud wherever you are. A cloud provides authorized users

access to resources over a network that you can connect to using a vari‐

ety of devices and interfaces. You may be able to restart a service from

97 Things Every Cloud Engineer Should Know2

Developer Advocate at Google

your mobile phone, ask your virtual assistant to provision a new test

environment, or view monitors and logs from your laptop.

Resource pooling

Cloud providers pool resources and make them available to multiple

customers—with security and other protections in place, of course!

Practically speaking, a cloud engineer does not need to know the physi‐

cal location of the CPU in the datacenter. Pooling also provides higher

levels of abstraction. A cloud engineer may specify the compute and

memory requirements for an application, but not which physical

machines provide the computing resources. Likewise, a cloud engineer

may specify a region where data should be stored but would not have

any say over which datacenter rack houses the primary database.

Rapid elasticity

A cloud engineer should not need to worry about the physical capacity

of a particular datacenter. Resources in the cloud are designed to scale

up to meet demand. Likewise, when demand for a service decreases,

cloud resources are designed to contract. Remember, elasticity goes both

ways: scale up and scale down. This scaling may happen at the request of

a cloud engineer, made via a user interface or API call, though in many

instances it will happen automatically with no human intervention.

Measured service

Consumption of cloud resources is measured and is usually one compo‐

nent of the cost. One of the promises of the cloud is that you pay for

what you use, and no more. Having visibility into how much of each

type of resource every service is using gives you visibility into your costs

that is typically not feasible in a traditional datacenter.

NIST’s definition goes beyond these five characteristics of cloud computing

to define service models like infrastructure as a service (IaaS), platform as a

service (PaaS), and software as a service (SaaS). The article also describes

various deployment models, including private and public.

Keep these five characteristics in mind as you explore the cloud. Use them to

help evaluate whether you are taking advantage of the cloud or simply treat‐

ing it as someone else’s datacenter.

Collective Wisdom from the Experts 3

Why the Cloud?
Nathen Harvey

In the early 2000s, I worked in the IT department of a publicly traded soft‐

ware company. My team was not responsible for building the software that

our company delivered to customers, but we were responsible for our cus‐

tomer and partner extranet, building a software delivery center that would

allow our customers to download the software instead of waiting for com‐

pact discs, our internal sales operations tools, and more. We were using tech‐

nology to enable the business. All of our systems ran in datacenters that we

managed. Expanding capacity for our systems required procuring, installing,

and configuring new hardware. This cycle could take up to 18 months.

In 2007 that company was acquired, and IT fell under the CIO of the new

organization. That person had one primary objective: cut costs. The CIO met

with our team and encouraged us to immediately stop working on anything

that cost money. We protested: our work supports and enables the business

to be more efficient, keeps our customers happy, and leads to more revenue,

we argued. But this was no concern of the CIO, whose objective was clear,

focused, and dispassionate: keep costs down.

By 2008, I’d left that company and joined my first start-up. We were a small,

scrappy team with a singular focus: launch. This was my first exposure to the

power of the cloud. A procure-and-provision process that used to take 18

months was now completed in minutes. The cloud has been a fundamental

enabler of my career for over a decade now, and I’ve picked up a few lessons

along the way.

Understand the Role of Technology

Yes, it is true that every company is now or is becoming a technology com‐

pany. It is important to listen to the words and watch the actions of leaders

in your organization. Technology can be a path to cost savings, or it can be a

key enabler and amplifier of the business. Sure, it can be both at the same

time, but your leaders are likely more focused on one of these two outcomes.

Pay attention and let their goals help drive the work that you do, or even

97 Things Every Cloud Engineer Should Know4

Developer Advocate at Google

where you work. Misaligned incentives can lead to friction, burnout, and

unsatisfied customers.

Automate the Cloud

In my preceding article, “What Is the Cloud?” I shared NIST’s list of capabil‐

ities that define the cloud. It is easy to fall into the trap of not utilizing the

cloud properly. Being able to provision resources at the click of a button or

the call of an API is just the beginning. How long does it take to go from

provisioned to useful? Invest time in learning how to automate and com‐

press that cycle. Doing so opens up a multitude of new ways to manage

infrastructure and applications.

Measure Progress

How do you know whether the cloud is working for you? When migrating

from a traditional datacenter environment, you will feel and see many

immediate improvements. But what if the applications you are responsible

for were born in the cloud? One thing is certain: there is always room for

improvement. I recommend starting with high-level measures for each team

or application and allowing improvements across those metrics to guide

your team’s investment in improvement. The four keys identified by the

DORA research led by Dr. Nicole Forsgren are a great place to start:

• Lead time

• Deploy frequency

• Time to restore

• Change fail percentage

Getting Started > Getting Finished

Aligning incentives, building up your team’s automation capabilities, and

measuring progress takes time and energy. Matching the success of the best

in the industry can seem daunting, or even unachievable. The truth is that

you must take an iterative approach. Remember, getting started with

improvements is more important than getting finished with them.

Collective Wisdom from the Experts 5

Three Keys to Making the
Right Multicloud
Decisions
Brendan O’Leary

In recent years, there has been a lot of discussion about the possibility of

multicloud and hybrid-cloud environments. Many business and technology

leaders have been concerned about vendor lock-in, or an inability to leverage

the best features of multiple hyperclouds. In regulated industries, there can

still be a hesitancy to move “everything” to the cloud, and many want to keep

some workloads within their physical datacenters.

The reality in the enterprise is that multicloud and hybrid-cloud are already

here. A 2019 State of the Cloud report found that 84% of organizations are

already using multiple clouds. On average, they use more than four clouds.

At the same time, we know that software excellence is the new operational

excellence. “Software has eaten the world,” and our competitiveness depends

on our ability to deliver better products faster.

Based on those realities, the question isn’t whether you will be a multicloud

or hybrid-cloud company. The question is, are you ready to be better at it

than your competition? If we accept that a multicloud strategy is required,

we need to systemize our thinking. There are three key enablers here to con‐

sider: workload portability, the ability to negotiate with suppliers, and the

ability to select the best tool for a given job. The cloud promises to remove

undifferentiated work from our teams. To realize that potential, we must

have a measured approach.

The most critical enabler is workload portability. No matter what environ‐

ment a team is deploying to, we must demand the same level of compliance,

testing, and ease of use. Thus, creating a complete DevOps platform that is

cloud-agnostic allows developers to create value without overthinking about

where the code deploys.

97 Things Every Cloud Engineer Should Know6

Senior Developer Evangelist at GitLab

In considering both the platform your developers will use and how to make

the right multicloud decisions, there are three keys: visibility, efficiency, and

governance.

Visibility means having information where it matters most, a trusted single

source of truth, and the ability to measure and improve. Whenever consider‐

ing a multitool approach—whether it is a platform for internal use or the

external deployment of your applications—visibility is crucial. For a DevOps

platform, you want real-time visibility across the entire DevOps life cycle.

For your user-facing products, observability and the ability to correlate pro‐

duction events across providers will be critical for understanding the system.

Efficiency may seem straightforward at first, but there are multiple facets to

consider. We must always be sure we are efficient for the right group. If a

tools team is selecting tools, the bias may be to optimize for that team’s effi‐

ciency. But if a selection here saves the tools team, which has 10 people, an

hour a week but costs 1,000 developers even a few extra minutes a month, a

negative impact on efficiency results. Your platform of choice must allow

development, QA, security, and operations teams to be part of a single con‐

versation throughout the life cycle.

Finally, governance of the process is essential regardless of industry. How‐

ever, it has been shown that working governance into the day-to-day pro‐

cesses that teams use allows them to move quicker than a legacy end-of-cycle

process. Embedded automated security, code quality, vulnerability manage‐

ment, and policy enforcement practices enable your teams to ship code with

confidence. Regardless of where the deployment happens, tightly control

how code is deployed and eliminate guesswork. Incrementally roll out

changes to reduce impact, and ensure that user authentication and authori‐

zation are enforceable and consistent.

These capabilities will help you operate with confidence across the multi‐

cloud and hybrid-cloud landscape.

Collective Wisdom from the Experts 7

Use Managed Services—
Please
Dan Moore

Use managed services. If there was one piece of advice I could shout from the

mountains to all cloud engineers, this would be it.

Operations, especially operations at scale, are a hard problem. Edge cases

become commonplace. Failure is rampant. Automation and standardization

are crucial. People with experience running software and hardware at this

scale tend to be rare and expensive. The knowledge they’ve acquired through

making mistakes and learning from different situations is hard-won.

When you use a managed service from one of the major cloud vendors,

you’re getting access to all the wisdom of their teams and the power of their

automation and systems, for the low price of their software.

A managed service is a service like Amazon Relational Database Service

(RDS), Google Cloud SQL, or Microsoft Azure SQL Database. With all three

of these services, you’re getting best-of-breed configuration and manage‐

ment for a relational database system. Configuration is needed on your part,

but hard or tedious tasks like setting up replication or backups can be done

quickly and easily (take this from someone who fed and cared for a MySQL

replication system for years). Depending on your cloud vendor and needs,

you can get managed services for key components of modern software

systems, including these:

• File storage

• Object caches

• Message queues

• Stream processing software

• Extract, transform, load (ETL) tools

97 Things Every Cloud Engineer Should Know8

Principal at Moore Consulting

(Note that these are all components of your application, and will still require

developer time to thread together.)

There are three important reasons to use a managed service:

• It’s going to be operated well. The expertise that the cloud providers can

provide and the automation they can afford to implement will likely sur‐

pass your own capabilities, especially across multiple services.

• It’s going to be cheaper. Especially when you consider employee costs.

The most expensive Amazon RDS instance costs approximately

$100,000 per year (full price). It’s not an apples-to-apples comparison,

but in many countries you can’t get a database architect for that salary.

• It’s going to be faster for development. Developers can focus on con‐

necting these pieces of infrastructure rather than learning how to set

them up and run them.

A managed service doesn’t work for everyone, though. If you need to be able

to tweak every setting, a managed service won’t let you. You may have strin‐

gent performance or security requirements that a managed service can’t

meet. You may also start out with a managed service and grow out of it.

(Congrats!)

Another important consideration is lock-in. Some managed services are

compatible with alternatives (Kubernetes services are a good example). If

that is the case, you can move clouds. Others are proprietary and will require

substantial reworking of your application if you need to migrate.

If you are working in the cloud and need a building block for your applica‐

tion, like a relational database or a message queue, start with a managed ser‐

vice (and self-host if it doesn’t meet your needs). Leverage the operational

excellence of the cloud vendors, and you’ll be able to build more, faster.

Collective Wisdom from the Experts 9

Cloud for Good Should
Be Your Next Project
Delali Dzirasa

I don’t know about you, but being stuck on an endless phone call with an

automated system drives me crazy. Usually, I’m trying to solve a simple

problem or access a service, but it can feel like I’m trapped in an endless loop

of pressing 1 or 2 to respond to questions rather than getting answers myself.

Why is it that I can press a few buttons on my phone and, in minutes, have a

car or food waiting for me, but I can’t figure out how to easily pay my water

bill online?

The cloud powers everything these days. Or, at least, it powers everything

that you enjoy using, usually because the tech it supports makes your day-to-

day life easier in some way. But, oddly, the real-world problems that most

people care about—problems around things like education, healthcare, and

food security—don’t get nearly enough attention.

For groups dealing with meaningful social issues, tech can be the last thing

on their list. There often just isn’t enough focus, energy, or resources avail‐

able to make meaningful tech improvements.

On a macro level, this speaks to a real gap in the market: there simply aren’t

enough digital services firms focused on helping to support civic tech or

cloud for good. Fearless, the company I founded in 2009, has a mission of

building software with a soul. We take on only projects that empower users

and change lives.

One of the places we’re working to build software with a soul is the Centers

for Medicare & Medicaid Services (CMS), where we’re helping the agency

modernize its technology. When programs are inefficient, recipients don’t

receive the best care, costs are high, and, at the end of the day, it’s American

taxpayers who pay the price. Improving these technologies makes the health‐

care system work better for everyone.

97 Things Every Cloud Engineer Should Know10

Founder and CEO of Fearless

The ideas that power cloud for good have been around for a long time—

longer than the terms civic tech or cloud for good themselves. For me, cloud

for good really came into the forefront of my mind when HealthCare.gov

failed. People wanted to help, and a bunch of digital services firms came in to

help.

I’ve heard from a lot of people who are saying, “How can I use my tech pow‐

ers for good? I want to work on projects that solve problems.” I believe this

speaks to the larger movement of people looking for meaning in the work

that they do and wanting humanity and our world to be better.

Get involved with local meetups, especially ones centered around solving

problems in the cloud-for-good space in your community. Code for America

brigades are a good place to start if you’re looking for outlets that you can

work with.

If there’s a nonprofit organization in your area that you would like to sup‐

port, donate your time to help build software. Think of the needs of civic

tech when you’re writing code. Open source software allows more people to

benefit from and use software solutions. By building open source, you enable

others to leverage your tech to support more projects.

In my city, we have Hack Baltimore. The tech movement teams up commu‐

nity advocates, nonprofits, technologists, and city residents to design sus‐

tainable solutions for the challenges impacting Baltimore. Find an

organization like Hack Baltimore in your community, or start one.

The cloud isn’t inherently good or bad; it’s all based on the intent of the end

users and those of us who wield our “tech powers” to power applications

around the world. We can help power amazing social missions that too often

get left behind. So while you’re off building the cloud, consider using some

of that energy to build the cloud for good.

Collective Wisdom from the Experts 11

A Cloud Computing
Vocabulary
Jonathan Buck

In any profession, being able to speak and understand the vernacular goes a

long way toward feeling comfortable in your role and working effectively

with your colleagues. If you’re just starting your career as a cloud engineer,

you will likely hear these terms throughout your workplace:

Availability

The amount of time that a service is “live” and functional. This is often

expressed in percentage terms. For example, if someone says their ser‐

vice has a yearly availability of 99.99%, that means it will be unavailable

for only 52.56 minutes in an entire year.

Durability

Even for the most reliable devices, any data stored on a computer is

ephemeral over a long enough time frame. Durability refers to the

chance that data will be accidentally lost or corrupted over a given time

period. Like availability, it’s typically expressed as a percentage value.

Consistency

Consistency refers to the notion that when you write data to a data store,

it (or the latest version of it) might not be immediately available. This is

because cloud-based data stores are built on distributed systems, and

distributed systems are subject to the CAP theorem. (Also known as

Brewer’s theorem, it holds that there are three things a distributed data

store can guarantee—consistency, availability, and partition tolerance—

but it can never guarantee all three at the same time.) Different cloud

environments and services will handle this differently, but the important

thing is to be aware of this nuance in designing cloud-based software

applications.

97 Things Every Cloud Engineer Should Know12

Senior Software Engineer at Amazon Web Services

Elasticity

One of the main advantages of the cloud is elasticity: the ability to

dynamically match hardware or infrastructure with the demands being

placed on an application at any given time. Elasticity has benefits in two

directions. Sometimes, like during high-traffic periods, you might need

more resources; at other times, you might need fewer. Because your

resource cost will be proportional to your provisioned resources, elastic‐

ity is a means of better matching your costs with the actual load on your

application.

Scalability

Scalability is similar to elasticity. Whereas elasticity refers to the notion

of dynamically increasing or decreasing your resources, scalability refers

to how your resources are actually augmented. Typically, scalability is

decomposed into two concepts: horizontal scaling and vertical scaling.

Horizontal scaling refers to adding host machines in parallel to meet

application demand. Vertical scaling refers to adding resources within a

given machine (such as adding RAM). These scaling approaches have

advantages and disadvantages, and are appropriate in different scenar‐

ios. The proper choice depends on your system architecture.

Serverless

Serverless refers to modern technology that allows you to run application

code without managing servers, hardware, or infrastructure. Sometimes

this capability is also referred to as function as a service (FaaS). Many

cloud providers offer their own forms of this. These serverless offerings

also provide the benefits of high availability and elasticity, concepts dis‐

cussed previously. Before serverless technologies, deploying software

involved managing and maintaining servers, as well as working to make

them available and scalable to meet traffic needs. Using serverless com‐

pute environments saves you from the burden of managing and main‐

taining servers in this fashion so you can focus your time and energy on

the application code. However, various trade-offs are involved.

Fully managed

In the early days of cloud computing, we typically interacted with basic

computing resources that were made available in the cloud: servers, data

stores, and databases. While this provided significant advantages, the

responsibilities of the software engineer were largely the same as those in

on-premises datacenters: managing and maintaining low-level hardware

resources. Fully managed resources are cloud resources that are offered

at a higher level of abstraction. The cloud provider takes responsibility

Collective Wisdom from the Experts 13

for some aspects of these resources, rather than the software engineer.

The trade-off is that fully managed services are typically more expensive

as a result, and often introduce various limitations or restrictions as

compared to operating on the more basic resources.

97 Things Every Cloud Engineer Should Know14

Why Every Engineer
Should Be a Cloud
Engineer
Michelle Brenner

I am a lazy engineer. If I have the option to copy, reference, or install a tool

to get my job done faster, I say thanks and move on. I started my tech career

working in entertainment, where you don’t have sprints or quarters to finish

tools. Studios need the work done yesterday, because they want to get the

best art possible before the release date. As an engineer, I know I can solve

any problem, but I’ve realized that I can have a much greater impact using

available tools.

Most of us are not working on groundbreaking technology; we’re solving

problems for customers. I want to focus on delighting my clients, not fid‐

dling with a problem a thousand engineers have already tackled. It is a com‐

mon misconception that cloud computing is just servers in someone else’s

warehouse. While you can get that bare-metal setup, there are so many other

features that no single person can know them all. If you can define a problem

in a general way, such as log in using social accounts, store information

securely, or scale service to meet demand, you can find a cloud tool to do it.

As a backend engineer, I was building APIs and designing databases. Learn‐

ing cloud technologies meant I could get my own code live faster, more

easily, and more reliably. A colleague was not always available to help me

improve the deployment pipeline or debug production problems. Learning

how to make these changes myself made the whole team more efficient and

effective. Expanding my skill set opened doors to career opportunities and

made it easier to accomplish personal projects.

Before I got started in cloud computing, I often abandoned personal projects

because deploying them seemed so daunting. But after gaining a sufficient

understanding of the systems involved, not only could I complete projects, I

could even use them to help with seemingly unrelated ones, like hosting a

Collective Wisdom from the Experts 15

Senior Software Engineer

podcast. I knew that most podcasts don’t make money, so I decided that if

the costs started to add up, I would not continue. After doing some research,

I realized that hosting costs for podcasts had three main features:

• Hosting the public files (audio and images)

• Formatting an XML file for the podcast aggregators

• Tracking episode playbacks

Why would I pay $10 to $15 a month for that when Amazon Simple Storage

Service (S3) can host my files for pennies? Hosting myself also meant I did

not have to worry about a third party handling my content or data. I set up a

public bucket for the audio and image files. Then I wrote up my XML file for

the aggregators and put it in the same bucket. To track playbacks, I added

logging on those files and analyzed them using Amazon Athena. I learned

that I don’t have many listeners, but that’s OK since my AWS bill is less than

$1 a month.

Now that I have you completely convinced to become a cloud engineer, here

is some rapid-fire advice I wish I’d gotten before I got started:

• Turn on billing alerts before you do anything else. It’s possible you could

follow a tutorial, not really knowing what you’re doing, and suddenly get

a huge bill. Hypothetically.

• Get as many free credits as you can. Your provider is competing with

other cloud-hosting providers for your business. Make them earn it.

• The documentation often focuses on features rather than user stories.

Independent content creators are great for filling in those gaps. Dev.to is

your friend.

• Change only one setting at a time.

• No one understands identity and access management (IAM).

Finally, if I have inspired you to learn and create something new, I’d love to

hear about it. Learning new tools will increase your impact, but teaching oth‐

ers how to use them will expand it exponentially.

97 Things Every Cloud Engineer Should Know16

Managing Up: Engaging
with Executives on the
Cloud
Reza Salari

In job descriptions for cloud engineers, you will often see a lot written about

the technology stack, programming/scripting languages, and years-of-

experience requirements that sometimes exceed how long the technology has

actually been available. However, arguably one of the most important job

requirements rarely makes the list. It is frequently what makes or breaks

your ability to implement a new capability, and it can help you avoid expect‐

ations that were never really based in reality anyway. Master it, and you can

unlock resources, support, and opportunities for you and your team. Failure,

on the other hand, often leads to frustration as your ideas seem to die on the

vine or you find yourself saddled with objectives that just can’t be met.

We often focus on managing down, but learning to manage up and commu‐

nicate with executives can, and should, be your (not so) secret weapon!

Although this skill takes years to cultivate, you can do some practical things

now to show them you can talk at their level. Here are my top five tips:

Understand what executives really need for the business.

Sure, it’s exciting when a new technology hits the market, and as tech‐

nologists we can’t wait to put it to good use. However, our focus should

be on choosing the right capabilities to answer the unmet needs of the

business.

Tell them why what you’re proposing will meet their needs, in their language.

You’ve found the perfect new capability that will solve a real business

problem, but when you tell them about the features, they just can’t con‐

nect the dots. Drop the jargon, talk about the outcomes, and tell the

story of how their experience will improve.

Collective Wisdom from the Experts 17

Business Information Security Officer

Be a trusted voice in a world of marketing buzzwords and sky-high

expectations.

The cloud is one of the great innovations driving technology and busi‐

nesses forward. There are plenty of real wins and successes to point to.

Executives are flooded with sales calls, marketing emails, and anecdotal

stories of how some large company built things better, faster, and

cheaper, so their company should be able to too. You, as a cloud engi‐

neer, have an opportunity to guide them through the noise to set realis‐

tic expectations and identify trade-offs. Pragmatism goes a long way!

Know the numbers.

The cloud relies on consumption-based usage for its cost model,

whereas legacy on-premises datacenters rely more on making the most

of fixed capacity. For example, if you have a grid-computing workload

that runs a model for two hours, three times a week, moving that to the

cloud may seem to make perfect sense. In a greenfield environment, it

certainly would. However, knowing that you have hardware in your

datacenter that has already been purchased and has three more years of

depreciation left could change which solution you advocate for. Adding

financial context to your recommendations demonstrates business acu‐

men and gets to the root of most of their questions.

Know how your executive’s performance is measured.

We all are motivated to succeed, and how we measure success as well as

how others measure our success guides us. Learn what motivates your

executives and what goals they are working toward. Show them you

want to be a partner in their success and that of the business.

You have a wealth of insight and knowledge that executives are craving; now

go out and tell them all about it in their language!

97 Things Every Cloud Engineer Should Know18

PART II

Architecture

1 A version of this article was originally published at Upstart.

The Future of Containers:
What’s Next?
Chris Hickman

Deciding which technology to use for running your cloud native applications

is a question of trade-offs.1 Virtual machines provide great security and

workload isolation but require significant computing resources. Containers

offer better performance and resource efficiency but are less secure because

they share a single operating system kernel.

What if we didn’t have to make these trade-offs? Let’s explore two of the

most promising technologies that combine the best of virtual machines and

containers: microVMs and unikernels.

MicroVMs

MicroVMs are a fresh approach to virtual machines. Rather than being

general-purpose and providing all the functionality an operating system may

require, microVMs specialize for specific use cases.

For example, a cloud native application needs only a few hardware devices,

such as for networking and storage. There’s no need for devices like full key‐

boards, mice, and video displays.

By implementing a minimal set of features and emulated devices, microVM

hypervisors can be extremely fast with low overhead. Boot times can be

measured in milliseconds (as opposed to minutes for traditional virtual

machines). Memory overhead can be as little as 5 MB of RAM, making it

possible to run thousands of microVMs on a single server.

A big advantage of containers is that they virtualize at the application level,

not the server level used by virtual machines. This is a natural fit with our

97 Things Every Cloud Engineer Should Know20

VP of Technology at Kelsus

development life cycle—after all, we build, deploy, and operate applications,

not servers.

A better virtual machine by itself doesn’t help us much if we have to go back

to deploying servers and give up our rich container ecosystem. The goal is to

keep working with containers but run them inside their own virtual machine

to provide increased security and isolation.

Most microVM implementations integrate with existing container runtimes.

Instead of directly launching a container, the microVM-based runtime first

launches a microVM and then creates the container inside that microVM.

Containers are encapsulated within a virtual machine barrier, without any

impact on performance or overhead.

It’s like having our cake and eating it too. MicroVMs give us the enhanced

security and workload isolation of virtual machines, while preserving the

speed, resource efficiency, and rich ecosystem of containers.

Unikernels

Unikernels aim to solve the same problems as microVMs but take a radically

different approach.

A unikernel is a lightweight, immutable OS compiled to run a single applica‐

tion. During compilation, the application source code is combined with the

minimal device drivers and OS libraries necessary to support the application.

The result is a machine image that can run without a host operating system.

Unikernels achieve their performance and security benefits by placing severe

restrictions on execution. Unikernels can have only a single process. With no

other processes running, less surface area exists for security vulnerabilities.

Unikernels also have a single address space model, with no distinction

between application and operating system memory spaces. This increases

performance by removing the need to context switch between user and ker‐

nel address spaces.

However, a big drawback with unikernels is that they are implemented

entirely differently than containers. The rich container ecosystem is not

interchangeable with unikernels. To adopt unikernels, you will need to pick

an entirely new stack, starting with choosing a unikernel implementation.

There are many unikernel platforms to choose from, each with its own con‐

straints. For example, to build unikernels with MirageOS, you’ll need to

develop your applications in the OCaml programming language.

Collective Wisdom from the Experts 21

So, What’s Next?

If you are using containers, microVMs should be on your road map.

MicroVMs integrate with existing container tooling, making adoption rather

painless. As microVMs mature, they will become a natural extension of the

runtime environment, making containers much more secure.

Unikernels, on the other hand, require an entirely new way of packaging

your application. For specific use cases, unikernels may be worth the invest‐

ment of converting your workflow. But for most applications, containers

delivered within a microVM will provide the best option.

97 Things Every Cloud Engineer Should Know22

Understanding Scalability
Duncan Mackenzie

A scalable system can handle varying degrees of load (traffic) while main‐

taining the desired performance. It is possible to have a scalable system that

is slow, or a fast site that cannot scale. If you can handle 100 requests per

second (RPS), do you know what to do if traffic increases to 1,000 RPS? The

cloud is well suited to producing a reliable and scalable system, but only if

you plan for it.

Scaling Options

To increase the capacity of a system, you can generally go in two directions.

You can increase the size/power of individual servers (scaling up) or you can

add more servers to the system (scaling out). In both cases, your system must

be capable of taking advantage of these changes.

Scaling Up

Consider a simple system, a website with a dependency on a data store of

some kind. Using load testing, you determine that the site gets slower above

100 RPS. That may be fine now, but you want to know your options if the

traffic increases or decreases. In the cloud, the simplest path is usually to

scale up the server that your site or database is running on. For example, in

Azure, you can choose from hundreds of machine sizes, all with different

CPU/memory and network capabilities, so spinning up a new machine with

different specifications is reasonably easy.

Increasing the size of your server may increase the number of requests you

can handle, but it is limited by the ability of your code to take advantage of

more RAM, or more CPU cores. Changing the size often reveals that some‐

thing else in your system (such as your database) is the limiting factor. It is

possible to scale the server for your database as well, making higher capacity

possible with the same architecture.

Collective Wisdom from the Experts 23

Developer Lead at Microsoft

It is worth noting that you should also test scaling down. If your traffic is

only 10 RPS, for example, you could save money by running a smaller

machine or database.

Scaling up is limited by the upper bound of how big a single machine can be.

That upper limit may cover your foreseeable needs, but it is still an example

of a poorly scalable system. Your goal is a system that can be configured to

handle any level of traffic.

An infinitely scalable system is hard, as you will hit different limits. A rea‐

sonable approach is to plan for 10 times your current traffic and accept that

work will be needed to go further.

Scaling Out

Scaling out is the path to high scalability and is one of the major benefits of

building in the cloud. Increasing the number of machines in a pool as

needed, and then reducing it when traffic lowers, is difficult to do in an on-

premises situation. In most clouds, adding and removing servers can happen

automatically, so that a traffic spike is handled without any intervention.

Scaling out also increases reliability, as a system with multiple machines can

better tolerate failure.

Unfortunately, not every system is designed to be run on multiple machines.

State may be saved on the server; for example, requiring users to hit the same

machine on multiple requests. For a database, you will have to plan how data

is split or kept in sync.

Keep Scalability in Mind, but Don’t Overdo It

Consider how your system could scale up or down as early as possible,

because that decision will guide your architecture. Do you need to know the

upper bound? Does everything have to automatically scale? No! Optimizing

for high growth too early is unnecessary. Instead, as you gather usage data,

continue testing and planning.

97 Things Every Cloud Engineer Should Know24

Don’t Think of Services,
Think of Capabilities
Haishi Bai

Acquiring a continuous power supply is a fundamental capability of a mobile

device. Most of us are familiar with sight of people flocking around charging

stations at airports (before the pandemic happened). As a matter of fact,

because this capability is so critical, we use a mixture of methods to provide a

continuous power supply to our precious phones—integrated batteries (in a

software sense, in-process libraries), portable power banks (local Docker

containers or services), or power plugs (service-oriented architecture, or

SOA).

To get your phone working, you don’t really care whether the power comes

from a plug or a power bank; you just need the capability to acquire power.

Capability-oriented architecture (COA) aims to provide a set of languages

and tools for developers and architects to design applications based on capa‐

bilities, regardless of where and how these capabilities are delivered, which is

an operational concern.

COA is especially relevant to edge-computing scenarios. For an edge solu‐

tion to keep continuous operation, it often needs to switch between service

providers when network conditions change. For example, a smart streetlight

system sends high-resolution pictures to a cloud-based AI model to detect

wheelchairs on a crosswalk and extends the green light as needed. When the

network connection degrades, it switches to low-resolution images. And

when the network is completely disconnected, it switches to a local model

that gives lower detection rates but allows business continuity. This is a

sophisticated system with various integration points and decision logic. With

COA, all the complexity is abstracted away from developers. All developers

need to do is to have a wheelchair detection capability delivered, one way or

another.

Collective Wisdom from the Experts 25

Principal Software Architect at Microsoft

COA is also relevant to cloud developers for two reasons. First, the cloud

and the edge are converging, and compute is becoming ubiquitous. As a

cloud developer or architect, you’ll face more and more situations that

require you to push compute toward the edge. COA equips you with the

necessary abstractions to keep your architecture intact while allowing maxi‐

mum mobility of components. You can imagine your solution as a puddle of

quicksilver that spans and flows across the heterogeneous computing plane,

across the cloud and the edge. Second, COA offers additional abstractions on

top of SOA so that your applications are decoupled from specific service

vendors or endpoints. COA introduces a semantic discovery concept that

allows you to discover capability offerings based on both functional and

nonfunctional requirements, including service-level agreements (SLAs), cost,

and performance merits. This turns the service world into a consumer mar‐

ket, as consumers are granted more flexibility to switch services, even

dynamically, to get the best possible returns on their investments. COA also

allows traditional cloud-based services to be pushed toward the edge, onto

telecommunications infrastructure or even household devices (such as in-

house broadband routers). This will be the foundation of a new breed of dis‐

tributed cloud without central cores that can’t be shut down (think of Skynet

in the Terminator movies).

With developments in natural language processing, we can imagine COA

capability discovery being conducted in natural language. In such cases,

users describe their intention with natural language, and COA gathers poten‐

tial offers and runs an auction to choose the best one. This means a human

user can interact with the capability ecosystem without the constraints of

specific applications—no matter where users are and what they’re using,

they’re able to consume all capabilities in the ecosystem without switching

contexts. Multitasking becomes a thing of the past because everything can

happen in every context. Instead of switching between tasks or contexts,

users are in a seamless, continuous flow.

When you design a system, don’t think of services; think of capabilities. It

might seem to be a subtle change, but you’ll thank yourself later that you’ve

made the switch.

97 Things Every Cloud Engineer Should Know26

You Can Cloudify Your
Monolith
Jake Echanove

Application rationalization exercises often determine that monolithic work‐

loads are better left on premises, insinuating that cloud benefits can’t be real‐

ized. But monoliths don’t have to be migrated to cloud native or

microservices architectures to take advantage of cloud capabilities. Many

methods can be employed to help legacy applications, such as SAP and Ora‐

cle apps, realize the agility, scalability, and metered billing advantages of the

cloud.

First, it is important to have a deep understanding of the application archi‐

tecture to ensure that the future landscape is flexible enough to be scalable.

For instance, many applications employ architectures consisting of web

servers, application servers, and databases. Sometimes these tiers are com‐

bined in single-instance deployments, which is a disadvantage in the cloud.

If the tiers are combined on a non-86 platform, they should be separated

when migrating to an x86-based cloud platform. This will help ensure that

the web, app, and database tiers are loosely coupled and can grow and shrink

without affecting the other tiers.

Second, it is key to be able identify and understand workload tendencies.

Let’s take an enterprise resource planning (ERP) financial system as an

example. The month-end close is a busy time for the system, because many

users are running reports, running close scenarios, and performing other

activities occurring only at the month’s end. Other times of the month are

less busy, thus requiring less resources. In the cloud, administrators can

bring up extra application servers at month’s end and shut them down for

the rest of the month to save on costs or reallocate resources for other pur‐

poses. Having knowledge of workload characteristics is key to help admins

understand when to scale to meet requirements and when to shut down sys‐

tems to save on costs.

Collective Wisdom from the Experts 27

Senior VP for Solutions Architecture at Lemongrass Consulting

Third, it is imperative to know that automation isn’t just for cloud native

applications. Scaling monolithic applications without user intervention is

possible if the cloud admin understands the inner workings of the applica‐

tion. It is common knowledge that autoscaling is often used with cloud

native technologies. For example, cloud native apps may be monitored for

metrics such as high CPU utilization and then can trigger an event to deploy

a new container to spread the workload. Legacy applications often require a

different approach, because they don’t function with containers or leverage

microservices. The work processes within the application would need to be

monitored. This is not merely monitoring an OS process, but interfacing at

the application layer to determine whether the application is taxed. If so, the

next step would be to trigger an event to spawn additional application

servers. It is also possible to recognize a workload decrease to then safely

shut down application servers without losing transactions.

Last, advanced methods can create DevOps-like deployment models, use

AIOps methodologies for day 2 support, and extend the legacy core func‐

tionality using a microservices architecture. Many customers have deployed

these methods into their production landscapes to make their legacy apps

more cloud native–like, but deploying some of these operating models

requires a shift in mindset and a deep understanding of the applications

being moved to the cloud. The possibilities are extensive for those cloud

admins who also possess application expertise with legacy workloads or that

work closely with application owners.

97 Things Every Cloud Engineer Should Know28

Integrating Microservices
in Cloud Native
Architecture
Kasun Indrasiri

When we construct cloud-based applications, we embrace cloud native

architecture in the design to meet agility, scalability, and resiliency require‐

ments. A cloud native application is designed as a collection of microservices

that are built around business capabilities.

These microservices interact with each other and with external applications

through interprocess communication techniques. These interactions can

range from invoking other microservices to creating composite microservi‐

ces by combining multiple microservices and other systems, building an

event consumer or producer service leveraging an event/message broker,

creating a microservice facade for a legacy monolithic system, and so on. The

process of building the interactions between these microservices is known as

microservices integration.

The integration of services, data, and systems has long been a challenging yet

essential requirement in the context of enterprise software application devel‐

opment. In the past, we used to integrate all of these disparate applications

using a point-to-point style, which was later replaced by a centralized inte‐

gration middleware layer known as an enterprise service bus (ESB) with ser‐

vice-oriented architecture (SOA). Here the ESB acts as the middleware layer

that provides all the required abstractions and utilities to integrate other sys‐

tems and services. But in the cloud native era, we no longer use a central,

monolithic shared layer containing all our integration logic. Rather, we build

microservice integrations as part of the microservice’s business logic itself.

For example, suppose you are designing an online retail application using a

microservices architecture and you have to develop a checkout service that

needs to integrate with other services: inventory, shipping, and a monolithic

enterprise resource planning application. In the ESB era, you would have

Collective Wisdom from the Experts 29

Product Manager and Senior Director at WSO2

developed the checkout service as part of the ESB by plumbing in all the

required services and systems. But in the context of microservices, you don’t

have an ESB, so you build all the business and integration logic as part of the

checkout service’s business logic.

If we take a closer look at microservice integration logic, one portion of that

logic is directly related to the business logic of the service while the other

portion is pretty much about interprocess communication. For instance, in

our example, the composition logic where we invoke and compose the

responses of all the downstream services and systems is part of the business

logic of the checkout service, and the network communication between the

services and systems (using techniques such as circuit breakers, retries, wire-

level security, and publishing data to observability tools) is agnostic of the

business logic of the service. Having to deal with this much complexity as

part of microservice development persuades us to separate the commodity

features that we built as part of the network communication from the ser‐

vice’s business logic.

This is where a service mesh comes into the picture. A service mesh is an

interservice communication layer where you can offload all the network

communication logic of the microservices you develop. In the service mesh

paradigm, you have a colocated runtime, known as a sidecar, along with each

service you develop. All the network communication–related features, such

as circuit breakers and secured communication, are facilitated by the sidecar

component of the service mesh and can be centrally controlled via the ser‐

vice mesh control plane.

With the growing adoption of Kubernetes, service mesh implementations

(such as Istio and Linkerd) are increasingly becoming key components of

cloud native applications. However, the idea that a service mesh is an alter‐

native to the ESB in a microservices context is a common misconception. As

mentioned previously, it caters to a specific aspect of microservice integra‐

tion: network communication. The business logic related to invoking multi‐

ple services and building composition still needs to be part of the service’s

business logic. Also, we need to keep in mind that most of the existing

implementations of the service mesh are designed only for synchronous

request/response communication. The concepts used in the service mesh

and sidecar architecture have been further developed to build solutions such

as Dapr, where you can use a sidecar that can be used for messaging, state

management, resilient communication, and so on.

To cater to the requirements of microservices integration and help you avoid

building all these complex integrations from scratch, various cloud native

97 Things Every Cloud Engineer Should Know30

integration frameworks are available, such as Apache Camel K, Micronaut,

and WSO2 Micro Integrator. When you develop a cloud native application,

based on the nature of the microservice that you’re developing, you can use

such an integration framework to build your microservice while leveraging

the service mesh for all the network communication–related requirements.

Collective Wisdom from the Experts 31

Containers Aren’t Magic
Katie McLaughlin

Containers, and the Open Container Initiative (OCI) image format specifica‐

tions, aren’t magic cure-alls. Popularized by Docker in the mid-2010s, the

concept of having a definition create an isolated space for software to live in

isn’t unique and isn’t a panacea.

Isolation standards have existed for years: virtual machines (VMs) are an

isolation mechanism. Your VM may not touch your neighbor’s VM, unless

you specifically allow it to (typically, through network firewalls). However,

that doesn’t mean you can’t have vulnerable software and malicious pro‐

grams on your system.

Containers can be seen as just an iteration on VMs, but in a smaller form

factor. VMs allowed more isolation environments on bare-metal servers.

Containers serve the same purpose, and are vulnerable to the same issues as

VMs. Indeed, Docker itself has been shown to be reproducible in a mere 100

lines of bash. The mechanisms by which we achieve isolation are not unique

or new, and the advantages they give us don’t outweigh the considerations

we need to keep in mind.

Downloading a random executable from the internet without knowing what

it does and running it on your local machine is something that should cause

a tickle in the back of any programmer’s head. So why would you include a

FROM in your Dockerfile without knowing the origin? If you can’t see the

source of the image you’re downloading from Docker Hub, anything could

be in there.

Just as containers can contain anything to start with, the packages that they

are intended to contain won’t always be benign. In any given month multiple

vulnerability websites may be launched, using cute logos and punny names

for at least a vague semblance of a marketing strategy. All this effort is not

just to draw attention to the researchers who find the issues (though it

helps), but to make sure everyone who runs the affected systems and needs

to apply fixes knows about them and can adjust their systems accordingly.

97 Things Every Cloud Engineer Should Know32

Developer Advocate at Google Cloud

But while vendors can update the operating systems of the hardware that’s

hosting container platforms to apply security patches, the contents within

the containers can be the issue. Throwing a bunch of legacy code in a con‐

tainer to “keep it safe” won’t help when the code itself contains something

that no container isolation environment can prevent escaping.

Using container scanning services to periodically check the contents of your

images for the latest known issues is just one way to ensure that you know of

any problems as soon as possible—implementing security standards when

the images are created is a better defense.

For containers that don’t require complex system calls, running these in a

strict container sandbox—a system that itself can’t call destructive com‐

mands—may be the best way to go. That way, even if your Eldritch horror

escapes its confinement, the damage it can do is minimal. You can’t call sys‐

tem commands that don’t exist.

You can create secure containers that you can’t break out of, but this

requires effort, security awareness, and constant vigilance.

Collective Wisdom from the Experts 33

Your CIO Wants to
Replatform Only Once
Kendall Miller

When you work for a small consultancy that helps companies modernize

their infrastructure, you get the rare opportunity to touch many kinds of

infrastructure. When you arrive at a client site, you can roll up your sleeves,

get knee deep in unbelievably rotten spaghetti infrastructure code, and

decide to put in place something you know is considered best practice but

that you’ve never gotten to play with before. And then, uniquely, on the next

engagement, you can try something else that’s new: you’ve heard about an

even shinier way to do infrastructure, so you want to go chase that squirrel.

Learning is fascinating, and solutions will continue to evolve.

If you work for a product company, however, and if your infrastructure has

been replatformed in the last five years, your CIO (or CTO, or VP of engi‐

neering, or…uh…marketing director—let’s be honest, it happens) is going

to have zero patience for a new platform for the sake of a new platform. You

might be bored out of your mind, or your pager might be going off every

night for totally fixable reasons. But that doesn’t mean your leadership team

has the capacity to stomach a change in tooling or believes that “pouring a

gallon of Kubernetes on things” is going to make all of your problems go

away.

So, if you’re an engineer stuck with an age-old infrastructure, you need a

strategy for picking and then pitching a replatforming.

When you pitch your proposal to the executives in charge, include the rea‐

sons why this particular change will increase velocity, why it will help you

ship faster, and—for goodness’ sake—why it will be the last replatforming

the company needs to do for another 5 to 10 years. The pitch needs to cover

a wide range of factors proving that your suggestion offers that Goldilocks

combination of ease and flexibility. You need to almost sing and dance about

how your changes will reduce the need for new headcount and enable scala‐

bility, security, efficiency, and future proofing.

97 Things Every Cloud Engineer Should Know34

President of Fairwinds

Then, pick something with tremendous community backing. Today that’s

Kubernetes; in a few years it may be something different, or something built

on top of Kubernetes. Kelsey Hightower (a principal engineer at Google)

once said, “I’m convinced the majority of people managing infrastructure

just want a PaaS. The only requirement: it has to be built by them.” Kuber‐

netes today is the ultimate PaaS builder, but it also enables something as

close to cloud agnosticism as is possible right now. Your CIO will love the

words cloud agnosticism.

As a systems engineer at a product company, your desire to learn can some‐

times feel like it’s in direct conflict with your CIO’s desire for stability.

Understanding that the company wants to replatform only once (and all the

incentives this directly impacts) is the only hope you have for a successful

pitch to make that replatforming happen during your tenure.

Everyone deals with infrastructure spaghetti code (if they’re lucky enough to

find infrastructure as code at all), whether it’s the engineer who wrote that

code or the one who builds the platform everything runs on. Get rid of it by

convincing your CIO that this is the time, and you are the person, for that

once-ever replatforming.

Collective Wisdom from the Experts 35

Practice Visualizing
Distributed Systems
Kim Schlesinger

Before cloud computing, ops engineers were more likely to have seen, held,

and physically maintained their servers. The primary reason for the

industry-wide shift from on-premises datacenters to cloud service providers

is that cloud providers carry the burden of maintaining the physical comput‐

ers and hardware they rent, which allows cloud engineers to focus on design‐

ing cloud infrastructure, continuous integration and continuous delivery

(CI/CD) pipelines, and applications. It also means that servers are far away

and invisible.

Highly skilled cloud engineers are able to imagine parts of the systems they

build and maintain, and they can visualize how a request flows from one

component to another. This isn’t a skill most of us are born with, but with

determination and practice, you can begin imagining and understanding

your invisible systems, and this will help you be a better engineer.

While there are several ways to begin visualizing your cloud infrastructure,

no matter the path you take, it is important that you construct these visuali‐

zations yourself, not just look at diagrams or graphs created by someone else.

The act of wrestling part of your system into a diagram or model will be the

fastest path to understanding, even if your model isn’t perfect.

Start with a part of your distributed system that has two or three compo‐

nents. For example, imagine you have a Node.js application that stores and

retrieves data from a MongoDB database, and both components are

deployed as containers on two separate instances on a public cloud like

AWS. A quick way to start visualizing is by drawing these parts as a block

diagram and showing the HTTP requests as arrows.

97 Things Every Cloud Engineer Should Know36

Site Reliability Engineer at Fairwinds

As you draw this diagram, you will likely ask yourself, “How is the initial

request from the user getting from the internet to my application, which is

inside a virtual private cloud (VPC)?” Then you add the virtual private cloud

and ingress.

You could add regions and availability zones, Secure Sockets Layer (SSL) ter‐

mination, the flow of authentication and authorization, replicas, load balanc‐

ers, and more until your diagram is the size of a small city, but that’s not the

point, and you have to stop eventually. The goal of this exercise is to make

sense of one part of your system, and through that understanding you are

freeing up your cognitive energy to improve that part or to begin under‐

standing something else.

Block diagrams are an easy way to get started, but they are limited by their

two dimensions. Other tools include data visualizations like those in the

D3.js library, web sequence diagrams that show how requests play out over

time, and physical 3D models like the solar system you built in the fourth

grade. The 3D model takes a lot of time and effort to build, but it’s fun as

hell, and you can start to feel out the size of components, how “far away”

they are from each other, and the states they share (or don’t), like memory

and the network.

Collective Wisdom from the Experts 37

Being able to imagine your distributed systems will help you suss out cause-

and-effect relationships that will make your debugging (and response to

incidents!) faster and more accurate. Once you do two or three visualization

exercises, you will start identifying cloud infrastructure patterns that you can

apply in a more senior role like cloud architect. If you practice visualizing

with your team, you’ll have valuable debates about the best way to model

your system, which will increase your team’s collective understanding.

Finally, if you practice visualizing your distributed systems, your monitoring

graphs and observability tools will be a rich layer of data in addition to your

strong understanding of your cloud infrastructure and your applications.

Cloud engineers have superpowers. We can change one line of configuration

code and turn off a computer on another continent, or run a command that

will quadruple the number of nodes, unlocking access to an application for

users from all over the world. Being able to manipulate machines that are

unseen is a wizard’s trick, but it also makes our systems opaque and hard to

understand. It’s worth your time to begin understanding your cloud infra‐

structure by practicing how to visualize distributed systems.

97 Things Every Cloud Engineer Should Know38

Know Where to Scale
Lisa Huynh

Most of the time, if all goes well, an application will hit a point where it

needs to grow. Outside of “the application is timing out,” however, deter‐

mining an acceptable level of performance can be subjective. Someone

whose customers are all in Canada may not care about response times in

Japan.

Whatever your metrics, let’s say you’re there. Typically, we can upgrade our

systems by scaling up or out, also called vertical and horizontal scaling,

respectively. With vertical scaling, we upgrade a resource in our existing

infrastructure. With horizontal scaling, we add more instances. But which

one should you be doing?

Vertical Scaling

You’re hitting the CPU limit, so you upgrade your instance from one with 8

CPUs to 16. Or maybe you’re running out of storage space, so you go from

100 GiB to 500 GiB. With this easiest and simplest way to scale, you’re run‐

ning the same application but on more powerful resources.

Most relational databases use vertical scaling so that they can guarantee data

validity (atomicity, consistency, isolation, and durability, or ACID proper‐

ties) and support transactions. So, for applications requiring a consistent

view of the data, such as in banking, you’d typically stick to vertical scaling.

Unfortunately, this type of scaling often involves downtime. If there’s

nowhere else to divert traffic, customers have to wait while the instance is

upgraded. Hardware also gets expensive and has its limits.

Horizontal Scaling

On the other hand, if your application is stateless or works with eventual

consistency, you can use horizontal scaling. Just increase the number of

machines that run the application and distribute the work among them. This

Collective Wisdom from the Experts 39

Lead Software Engineer at Storyblocks

is great for handling dynamic loads, such as normal fluctuations throughout

the day, and avoiding the “hug of death” from a surge of traffic.

If your application relies on state, you may need to change it in order to use

horizontal scaling. NoSQL databases can scale out because they make trade-

offs of weaker consistency; during updates, invalid data could be returned.

Also, you will need some way to distribute traffic across your instances. The

application could handle this itself, or a dedicated load balancer resource

could handle routing the traffic to instances.

Smart routing should also bring reliability and allow changes without down‐

time, as it should avoid “bad” or unavailable instances. Numerous policies

can be applied to more smartly shape your traffic. For instance, if you’re try‐

ing to serve a global audience, you may end up being constrained by the time

it takes for requests to travel from an end user to your server. In that case,

you may consider adding instances in multiple regions, and you’ll need a

balancer that will route to the closest available server.

If you are attempting to improve the response time of static assets (such as

HTML pages), consider specialized services called content delivery networks

(CDNs). A CDN handles distributing your assets across its global network of

servers and routing each end user to the most optimal server. This can be a

lot simpler than building out that network yourself.

Conclusion

In the end, which strategy you use to scale will depend on your system’s

requirements and bottlenecks. As a rule of thumb, vertical scaling is simpler

to manage and great for applications requiring atomicity and consistency—

but upgrading can be expensive and require downtime. Horizontal scaling is

elastic and brings reliability, yet is more complicated to manage.

97 Things Every Cloud Engineer Should Know40

Serverless Bad Practices
Manasés Jesús Galindo Bello

Amazon’s launch of AWS Lambda, launched in 2014 made it the first cloud

provider with an abstract serverless computing offering. Serverless is the

newest approach to cloud computing, enabling developers to run event-

driven functions in the cloud without having to administer the underlying

infrastructure or set up the runtime environment. The cloud provider man‐

ages deployment, scaling, and billing of the deployed functions.

Serverless has become a buzzword that attracts developers and cloud engi‐

neers. The most relevant implementation of serverless computing is the

function as a service (FaaS). When using a FaaS, developers only have to

deploy the code of the functions and choose which events will trigger them.

Although it sounds like a straightforward process, certain aspects have to be

considered when developing production-ready applications, thus avoiding

the implementation of a complex system.

Deploying a Lot of Functions

FaaS follows the pay-as-you-go approach; deployed functions are billed only

when they are run. As there are no costs for inactive serverless functions,

deploying as many functions as you want might be tempting. Nevertheless,

this may not be the best approach, as it increases the size of the system and

its complexity—not to mention that maintenance becomes more difficult.

Instead, analyze whether there is a need for a new function; you may be able

to modify an existing function to match the change in the requirements, but

make sure it does not break its current functionality.

Calling a Function Synchronously

Calling a function synchronously increases debugging complexity, and the

isolation of the implemented feature is lost. The cost also increases if the two

functions are being run at the same time (synchronously). If the second

function is not used anywhere else, combine the two functions into one

instead.

Collective Wisdom from the Experts 41

Software Architect at Cumulocity IoT by Software AG

Calling a Function Asynchronously

It is well known that asynchronous calls increase the complexity of a system.

Costs will increase, as a response channel and a serverless message queue

will be required to notify the caller when an operation has been completed.

Nevertheless, calling a function asynchronously can be a feasible approach

for one-time operations; e.g., to run a long process such as a backup in the

background.

Employing Many Libraries

There is a limit to the image size, and employing many libraries increases the

size of the application. The warm-up time will increase if the image size limit

is reached. To avoid this, employ only the necessary libraries. If library X

offers functionality A, and library Y offers functionality B, spend time inves‐

tigating whether a library Z exists that offers A and B.

Using Many Technologies

Using too many frameworks, libraries, and programming languages can be

costly in the long term, as it requires people with skills in all of them. This

approach also increases the complexity of the system, its maintenance, and

its documentation. Try limiting the use of different technologies, especially

those that do not have a broad developer community and a well-documented

API.

Not Documenting Functions

Failing to document functions is the bad practice of all times. Some people

say that good code is like a good joke—it needs no explanation. However,

this is not always the case. Functions can have a certain level of complexity,

and the people maintaining them may not always be there. Hence, docu‐

menting a function is always a good idea. Future developers working on the

system and maintaining the functions will be happy you did it.

97 Things Every Cloud Engineer Should Know42

Getting Started with
AWS Lambda
Marko Sluga

AWS Lambda is a serverless processing service in AWS. When programming

with Lambda, a logical layout of your application is literally all you need.

You simply need to make sure each component in the layout maps directly

to a function that can independently perform exactly one task. For each

component, code is then developed and deployed as a separate Lambda

function.

AWS Lambda natively supports running any Java, Go, PowerShell, Node.js,

C#, Python, or Ruby code package that can contain all kinds of extensions,

prerequisites, and libraries—even custom ones. On top of that, Lambda even

supports running custom interpreters within a Lambda execution environ‐

ment through the use of layers.

The code is packaged into a standard ZIP or WAR format and added to the

Lambda function definition, which in turn stores it in an AWS-managed S3

bucket. You can also provide an S3 key directly to Lambda, or you can

author your functions in the browser in the Lambda section of the AWS

Management Console. Each Lambda function is configured with a memory

capacity. The scaling of capacity goes from 128 MB to 3,008 MB, in 64 MB

increments.

The Lambda section of the Management Console allows you to manage your

functions in an easy-to-use interface with a simple and efficient editor for

writing or pasting in code. The following example shows how to create a

simple Node.js Lambda function that prints out a JSON-formatted response

after you input names as key/value pairs.

Collective Wisdom from the Experts 43

Cloud Consultant and Instructor

Building an Event Handler and Testing the
Lambda Function

Start by opening the AWS Management Console, going to the AWS Lambda

section, and clicking Function and then “Create function.”

Next, replace the default code with the code shown here. This code defines

the variables for the key/value pairs you will be entering in your test proce‐

dure and returns them as JSON-formatted values:

exports.handler = async (event) => {

var myname1 = event.name1;

var myname2 = event.name2;

var myname3 = event.name3;

var item = {};

item [myname1] = event.name1;

item [myname2] = event.name2;

item [myname3] = event.name3;

const response = {

body: [JSON.stringify('Names:'), JSON.stringify(myname1), JSON.

stringify(myname2), JSON.stringify(myname3)],

};

return response;

};

When you are done creating the function, click the Save button at the top

right.

Next, you need to configure a test event for entering your key/value pairs.

You can use the following code to create your test data:

{

"name1": "jenny",

"name2": "simon",

"name3": "lee"

}

Once you’ve entered that, scroll down and click Save at the bottom of the

Configure Test Event dialog box. Next, run the test, which invokes the func‐

tion with your test data. The response should be a JSON-formatted column

with the value Names, and then a list of the names that you entered as test

data.

97 Things Every Cloud Engineer Should Know44

In the execution result, you also have information about the number of

resources the function consumed, the request ID, and the billed time. At the

bottom, you can click the “Click here” link to go to the logs emitted by

Lambda into Amazon CloudWatch.

In CloudWatch, you can click the log stream and see the events. By expand‐

ing each event, you get more detail about the request and duration of the

execution of the Lambda function. Lambda also outputs any logs created by

your code into this stream because the execution environment is stateless by

default.

In this example, you’ve seen how easy it is to create, deploy, and monitor an

AWS Lambda function—and that serverless truly is the future of cloud com‐

puting. Enjoy coding!

Collective Wisdom from the Experts 45

1 A version of this article was originally published at SYSADVENT.

It’s OK if You’re Not
Running Kubernetes
Mattias Geniar

I love technology.1 We’re in an industry that is fast-paced, ever improving,

and loves to be cutting-edge and bold. It’s this very drive that gives us excit‐

ing new tech like HTTP/3, Kubernetes, Golang, and so many other interest‐

ing projects.

But I also love stability, predictability, and reliability. And that’s why I’m

here to say that it’s OK if you’re not running the very latest flavor-du-jour

insert-new-project-here.

The Media Tells Us Only Half the Truth

If you were to read or listen to only the media headlines, you might believe

everyone is running their applications on top of an autoscaling, load-

balanced, geo-distributed Kubernetes cluster backed by only a handful of

developers who set the whole thing up overnight. It was an instant success!

Well, no. That’s not how it works. The reality is, most Linux or open source

applications today still run on a traditional Debian, Ubuntu, or CentOS

server—as a VM or a physical server.

I’ve managed thousands of servers over my lifetime and have watched tech‐

nologies come and go. Today, Kubernetes is very hot. A few years ago, it was

OpenStack. Go back some more, and you’ll find KVM and Xen, paravirtuali‐

zation, and plenty more.

I’m not saying all these technologies will vanish—far from it. Each project or

tool has merit; they all solve particular problems. If your organization can

benefit from something that can be fixed that way, great!

97 Things Every Cloud Engineer Should Know46

Cofounder of Oh Dear

There’s Still Much to Improve on the Old and
Boring Side of Technology

My background is mostly in PHP. We started out using the Common Gate‐

way Interface (CGI) and FastCGI to run our PHP applications and have

since moved from mod_php to php-fpm. For many system administrators,

that’s where it ended.

But there’s so much room for improvements here. The same applies to

Python, Node.js, or Ruby. We can further optimize our old and boring set‐

ups (you know, the ones being used by 90% of the web) and make them even

safer, more performant, and more robust.

Were you able to check every configuration and parameter? What does that

obscure setting do, exactly? What happens if you start sending malicious

traffic to your box? Can you improve the performance of the OS scheduler?

Are you monitoring everything you should be? That Linux server that runs

your applications isn’t finished. It requires maintenance, monitoring,

upgrades, patches, interventions, backups, security fixes, troubleshooting…

Please don’t let the media convince you that you should be running Kuber‐

netes just because it’s hot. You have servers running that you know still have

room for improvements. They can be faster. They can be safer.

Get satisfaction in knowing that you’re making a difference for your business

and its developers because your servers are running as best they can. What

you do matters, even if it looks like the industry has all gone for The Next

Big Thing.

But Don’t Sit Still

Don’t take this as an excuse to stop looking for new projects or tools, though.

Have you taken the time yet to look at Kubernetes? Do you think your busi‐

ness would benefit from such a system? Can everyone understand how it

works? Its pitfalls?

Ask yourself the hard questions first. There’s a reason organizations adopt

new technologies. It’s because they solve problems. You might have the same

problems!

Every day new projects and tools come out. I know because I write a weekly

newsletter about it. Make sure you stay up-to-date. Follow the news. If some‐

thing looks interesting, try it! But don’t be afraid to stick to the old and bor‐

ing server setups if that’s what your business requires.

Collective Wisdom from the Experts 47

Know Thy Topology
Nikhil Nanivadekar

In today’s era of cloud computing, it is imperative to understand the struc‐

ture of a system. A holistic view of the system topology is important to

understand how a system works and to figure out the multiple moving com‐

ponents. A few main aspects to consider are modularity, deployment strat‐

egy, and datacenter affinity.

Modularity

When creating a modular system, the simplest rule to follow is to ensure sep‐

aration of concerns between functionality. A particular microservice should

be responsible for carrying out a single function and its related processing.

This helps microservices have a small footprint. Microservice instances

should be stateless, replaceable, and scalable. If a microservice instance is

replaced by another instance of the same microservice, the output should be

the same. If a microservice instance is scaled by adding more instances, the

system should still function properly.

Deployment Strategy

Deployment means releasing a new version of an application to production.

Deployment strategies need to be considered while upgrading an applica‐

tion, as they directly backward compatibility. Multiple deployment strategies

are used today, including:

Re-create

The old version is shut down; the new version is rolled out.

Rolling update (incremental)

The new version is incrementally rolled out to replace the old version.

Blue/green

The new version is fully released while the old version is working, and

traffic is directed from the old version to the new version.

97 Things Every Cloud Engineer Should Know48

Director at BNY Mellon

Canary

The new version is released to a small group of users before releasing it

broadly.

A/B testing

In this extension of a canary deployment, the new version is released to a

small group of users, and depending on the adoption of new features,

the features are rolled out broadly.

Shadow (prod-parallel)

The new version is released, and both the old and new versions serve the

same requests.

In choosing a strategy, the key consideration is how many versions of the

application need to be functional at the same time. If multiple versions of the

same application need to run at the same time, maintaining backward com‐

patibility is necessary.

Datacenter Affinity

In a multi-datacenter architecture, services run in multiple datacenters. This

approach provides redundancy, disaster recovery, and scalability.

Depending on your needs, you may deploy every service or a only subset of

the services. In an all-active model, all the deployed services across all data‐

centers serve the requests. In an active–passive model, one set of datacenters

is deemed active, and a second set is deemed passive. All traffic is directed to

services in the active datacenters. If a disaster recovery activity occurs and

the datacenters need to be switched, in an active-passive scenario, all the

requests from the active datacenters are directed to the passive datacenters.

While a multi-datacenter architecture provides numerous benefits from a

resiliency perspective, it can cause latency issues. Each time service-to-

service calls occur, data needs to be transferred from one location to another.

If the services are colocated, the data transmission time is minimal. If not,

latency can be significant. Consider four services across two datacenters:

datacenter 1 has services A and C, and datacenter 2 has services B and D.

Assume there is a 5-millisecond transmission time between datacenters. So,

if A calls B, B calls C, and C calls D, then the latency becomes 15 ms. If the

same process is followed serially for 1,000 calls, the latency adds up to 15 sec‐

onds, thereby causing a slow response time.

Collective Wisdom from the Experts 49

In a distributed world, multiple moving components exist. The topology of

the system becomes an important piece of the puzzle to control them. As

long as you have a solid understanding of the topology, these multiple mov‐

ing components can prove to be a boon when delivering software solutions.

97 Things Every Cloud Engineer Should Know50

System Fundamentals
Will Still Bite You
Noah Abrahams

Imagine you’ve just joined a new company, ready to embark on your first

day of cloud engineering. You’ve been reading all about DevOps principles,

and you’re excited to get started in a world dominated by APIs and GitOps.

This level of technology comes with the promise of focusing on only what’s

directly relevant to your role, while everything else is just “taken care of” for

you. You go to push your first deployment and…the job fails? It hits…an

issue with an upstream repository? How is that even a thing? Doesn’t all this

stuff “just work”?

The most common mistake that I’ve seen among those getting ramped up

with cloud computing is to assume that because these are commercially

available solutions, all the possible underlying issues are somehow magically

taken care of. Being available for your use absolutely does not mean that the

systems you’re given are free from bugs or idiosyncrasies. I’ve spent the past

few years working at a layer of container orchestration that is multiple levels

of abstraction away from what would otherwise be traditional “system man‐

agement,” and it can really make you feel like you’re working in another

realm entirely—so it’s important to not lose sight of what your stack is built

from.

Kubernetes pods aren’t terminating properly? Maybe that’s not an API or

etcd issue, but instead you’ve just stumbled across a problem with systemd

not handling the containerd shims correctly. Congratulations on finding an

obscure bug. Containers are crashing on bootup, but they ran fine on your

development system? Oh, look, you just hit a file descriptor limit in the

AMI’s default kernel settings. Now you need to change that as part of your

boot process. Apparently running out of IPs, but you can’t figure out why or

how? Maybe it’s an issue with the hypervisor underneath the instance type

you chose and the number of devices it can natively handle. A cascading

node-by-node failure across your whole platform? Maybe you should check

Collective Wisdom from the Experts 51

Director of Enablement

your certificate expiration dates. Network connections aren’t working as

expected? There’s an 85% chance it’s actually a DNS problem.

This isn’t to say that the upper layers don’t also have their fair share of prob‐

lems, but if you’re an operations engineer, think about this: how many times

have you been annoyed by a development team blaming your shiny new

platform because a database connection string didn’t work? Since your sys‐

tem was the new piece, the problem “must be on your end.” You knew it was

a problem with their SQL connection, but you had to convince them that the

problem was there. The only way to do that was to examine the problem at a

fundamental layer. Why would you treat your own systems any differently?

The point is, building your application or platform on top of the abstractions

that a cloud provider gives you does not make the underlying layers stop

existing. In many cases, it makes them even more important. An issue at, for

example, the OS image level can cascade to affect every layer above it, and

manifest across your whole distributed system. In many cases, the failure

modes can also be less obvious than we’re used to. Therefore, having good

visibility into your systems (through, for example, logging with minimal

noise, using appropriate metrics, and having observability at all) will help

separate the issues at the layer you’re focused on from the fundamental sys‐

tem issues that can still bite you.

So, long story short: don’t forget what’s under the hood; you will probably

still have to deal with the things you expect to be abstracted away; and when

in doubt, it’s probably DNS.

97 Things Every Cloud Engineer Should Know52

Cloud Processing Is Not
About Speed
Rustem Feyzkhanov

Data and machine learning processing pipelines used to be about speed.

Now we live in a world of public cloud technologies, where any company can

procure additional resources in a matter of seconds. This fact changes our

perspective on the way processing pipelines should be constructed.

In practice, we pay equally for providing 10 servers for 1 minute or 1 server

for 10 minutes. Therefore, the focus shifts from optimizing execution time to

optimizing scalability and parallelization.

Let’s imagine a perfect data processing pipeline: 1,000 jobs get processed in

parallel on 1,000 nodes, and then the results are gathered together. This

would mean that at any scale, the speed of processing doesn’t depend on the

number of jobs and is always equal to the processing time for one job.

This doesn’t sound so impossible. Serverless infrastructure, which is becom‐

ing more and more popular, provides a way to launch thousands of process‐

ing nodes in parallel. In addition, more and more vendors now have pure

container-as-a-service offerings, meaning that once you define, for example,

a Docker image, it will be executed in parallel, and you will pay for only pro‐

cessing time. Not only that, but when serverless infrastructure and container

as a service are coupled with native message buses or orchestrators they are

able to handle large numbers of incoming messages by independently map‐

ping them to these scalable computer services. These services enable a lot of

opportunities, and by utilizing them we can minimize idle time and scale

infrastructure to match load perfectly.

But once we achieve perfect horizontal scalability, should we focus on execu‐

tion time? Yes, but for a different reason. In a world of perfect horizontal

scalability, execution time doesn’t influence the speed of processing the

batch much, but it significantly influences the cost. Optimizing speed twice

means optimizing cost twice, and that is the new motivation for optimizing

development.

Collective Wisdom from the Experts 53

Business Information Security Officer

Furthermore, designing an absolutely scalable data pipeline without taking

into account optimizing algorithms at all can lead to an extremely high cost

of the pipeline. That is one of the disadvantages of a system that doesn’t have

an economy of scale.

One additional opportunity is about separating apps into modular parts and

executing each part on a separate scalable service. This approach provides a

way to find the best fit for your application and minimize idle CPU (or

GPU) and RAM. Once we find this kind of fit, we can not only minimize the

cost of processing, but also make sure that we process each part fast enough

(for example, we might preprocess data not on the GPU VM, but in parallel

on multiple CPU VMs). And finally, we can start using CPU VMs from one

vendor, GPU VMs from another vendor, and serverless computing resources

from a third one to find the best balance between speed, cost, and scalability.

The emerging opportunity is to design data pipelines to optimize unit costs

and enable scalability from initial phases for transparent communication

between data engineers and other stakeholders, such as project managers

and data scientists.

97 Things Every Cloud Engineer Should Know54

1 Excerpt from Building Serverless Applications with Google Cloud Run by Wietse Venema (O’Reilly,

2020).

How Serverless Simplifies
the Developer Experience
Wietse Venema

If you use serverless components to build your application, your application

is serverless—but what does serverless mean?1 It’s an abstract and overloaded

term that means different things to different people.

When trying to understand serverless, you shouldn’t focus too much on the

“no servers” part—it’s more than that. In general, this is what I think people

mean when they call something serverless, and why they are excited about it:

• It simplifies the developer experience by eliminating the need to manage

infrastructure.

• It’s scalable out of the box.

• Its cost model can result in significant savings, because you pay exactly

for what you use, not for capacity you reserve up front. If you use noth‐

ing, you pay nothing.

Here, I’ll focus on the first characteristic. What does that simple developer

experience mean?

Eliminating infrastructure management means you can focus on writing

your code and have someone else worry about deploying, running, and scal‐

ing your application. The platform will take care of all the important and

seemingly simple details that are surprisingly hard to get right. Examples

include autoscaling, fault tolerance, logging, monitoring, upgrades, deploy‐

ment, and failover.

One thing you specifically don’t have to do in the serverless context is server

management. Servers still exist in a serverless platform, but you don’t have to

Collective Wisdom from the Experts 55

Senior Google Cloud Engineer at Binx.io

worry about them anymore. The platform offers an abstraction layer. This is

the primary reason we call it serverless.

When you are running a small system, server management might not seem

like a big deal, but readers who manage more than 10 servers know that this

can be a significant responsibility that takes a lot of work to get right. Here is

an incomplete list of tasks you no longer need to do when you run your

application logic on a serverless platform:

• Provisioning and configuring servers (or setting up automation)

• Applying security patches to your servers

• Configuring networking and firewalls

• Setting up Secure Sockets Layer/Transport Layer Security (SSL/TLS) cer‐

tificates, updating them yearly, and configuring a web server

• Automating application deployment on a cluster of the servers

• Setting up logging and metrics monitoring to provide insights into sys‐

tem performance

And that is just about servers. Most businesses have higher and higher

expectations for system availability. More than 30 minutes of downtime per

month is generally not acceptable. To reach these levels of availability, you

will need to automate your way out of every failure mode; there is not

enough time for manual troubleshooting. As you can imagine, this is a lot of

work and leads to more complexity in your infrastructure. If you build soft‐

ware in an enterprise environment, you’ll have an easier time getting appro‐

vals from security and operations teams, because a lot of their

responsibilities shift to the vendor.

Availability is also related to software deployments, now that it is more com‐

mon to deploy new software versions on a daily basis instead of monthly.

When you deploy your application, you don’t want to experience downtime,

even when the deployment fails.

Serverless technology helps you focus on solving your business problems and

building a great product, while someone else worries about the fundamentals

of running your app. This sounds convenient, but you shouldn’t take this as

all your responsibilities disappear. Most important, you still need to write and

patch your code, and make sure it is secure and correct. You still need to

manage some configuration, like setting resource requirements, adding scal‐

ing boundaries, and configuring access policies.

97 Things Every Cloud Engineer Should Know56

Serverless is great if you value a simple and fast developer experience, and if

you don’t want to build and maintain traditional server infrastructure. The

servers are still there—you just can’t manage them anymore.

Collective Wisdom from the Experts 57

PART III

Migration

People Will Expect
Things—Help Them
Expect Right
Dave Stanke

News travels fast. When your stakeholders—your nontechnical colleagues,

your customers, and everyone in between—learn that you’re migrating to the

cloud, they may react in a variety of ways:

“You’ll regret it. I had a friend who did cloud, and now he has no con‐

trol over his expenses.”

“Sweet! All the tech billionaires run their stuff on the cloud. We’re going

to be rich!”

“OK, but it’ll be your head when we get hacked.”

…and perhaps the most likely reaction of all:

“Er, where’s the cloud?”

You may be tempted to avoid the conversation entirely. You could decide

that your migration is need-to-know, and that anyone who won’t be hands-

on for the transition doesn’t need to know. That’s a mistake. Why? Because

all your stakeholders will be affected. Innumerable tiny and not-so-tiny dif‐

ferences exist between running your own datacenter and using a cloud pro‐

vider. Every difference is likely to have an impact on user experience, leading

to conversations like this:

“Why isn’t this the way it used to be?”

“Because cloud.”

“Because where?”

Collective Wisdom from the Experts 59

Developer Advocate at Google

Most importantly, remember that you’re moving to the cloud for a reason.

You’re going to put in a lot of work to have a successful migration. (It will be

successful. I believe in you.) Your stakeholders need to feel that it’s worth it,

rather than wishing you had spent that effort elsewhere. So…

Do engage nontechnical stakeholders in your migration. Inspire them to see

the benefits of the cloud, and help them understand its transformative

potential.

But don’t oversell it. Maybe you’re excited about rapid autoscaling. The

cloud supports that! But it’s not magic. Your application components won’t

instantly decouple themselves to acquire elasticity at every bottleneck. Or

maybe you’re planning to use a database as a service to reduce operational

burden. Great! But it doesn’t come with a free DBA on call to fix your busted

schema. And while the cloud might enable automated provisioning for faster

feature releases, someone has to put in the work to build those pipelines (and

maybe write some tests while you’re at it, hmm?).

On the other hand, don’t undersell it. If you frame your migration as just a

minor technical refactor, people will expect it to take a minor amount of

effort. They’ll also be resentful of any interruptions to their workflow. (Even

good changes become bad news when people aren’t expecting them.) You

need to help them understand that this is a big deal. The cloud truly is a rev‐

olutionary technology, supporting entirely new ways of delivering software.

To master it requires learning many new things, while unlearning many old

things. Teach stakeholders the possibilities, describe the journey, and dream

big, together.

While you’re at it, do share ongoing updates, and do make them relevant to

your audience. Your cloud migration isn’t likely to happen in an afternoon.

It may take years. Design your migration to produce demonstrable stake‐

holder benefits, early and often. Then communicate those benefits as soon as

they materialize. Your colleagues will be happy to receive status updates like

“We turned down two server racks today, which will save an estimated

$3,900 per month” or “Since we implemented blue/green deployments last

month, we’ve caught two major bugs before they could have any customer

impact.”

Finally, do ask stakeholders for feedback and questions. The cloud is a mys‐

terious place (well, “place”), and if you don’t ask, you’ll never know what

assumptions—or misperceptions—they might have.

Learn what they expect, and help them expect right.

97 Things Every Cloud Engineer Should Know60

Failing a Cloud Migration
Lee Atchison

Moving to the cloud may appear easy, but you can make many common

mistakes that can cause your migration to falter, struggle, or fail outright.

Two of the most common mistakes that I see people make that hurt their

ability to be successful in the cloud are not optimizing for the cloud and

lacking an architectural strategy.

Mistake 1: Not Optimizing for the Cloud

Ever hear of a lift-and-shift migration? Moving an application to the cloud as

is, without making any significant changes to the application, is a common

novice migration strategy. This strategy is an easy way to move to the cloud,

but more often than not, the benefits you expect to see from using the cloud

will not materialize from a simple lift-and-shift migration.

For example, many people believe moving to the cloud will save money in

terms of infrastructure costs. This is true for most organizations. However,

organizations that perform a simple lift-and-shift often see their infrastruc‐

ture costs increase after moving to the cloud.

Why is this so? In most cases, the increase is due to improper or incomplete

planning before and during the cloud migration. Many of the cloud’s cost

benefits come from its ability to dynamically allocate and consume resources

on demand, and then free the same resources when they are no longer

needed. This powerful capability lets the cloud handle the scaling needs of

your applications without requiring it to keep a significant quantity of spare

resources in reserve to handle peak loads.

However, utilizing dynamic resources typically requires changes in your

application architecture. Sometimes those changes are simple, and some‐

times they are complex. But either way, if you perform a basic lift-and-shift

migration and do not implement the necessary architectural changes, you

end up utilizing the cloud with the same static processes that were in use on

premises. This not only eliminates a critical financial benefit of using the

cloud, but also can increase your overall costs. The cloud is not optimized

Collective Wisdom from the Experts 61

Cloud Consultant and author of Architecting for Scale

for replacing static infrastructures, so your costs may be unexpectedly higher

than they were on premises.

Without properly optimizing for the cloud, you risk failing to meet your

objectives for the cloud migration.

Mistake 2: Lack of Architectural Strategy

Even when migrating applications that are mostly ready for the cloud, signif‐

icant technical planning is required. You still have to deal with migrating

data, downtime management, and interservice latency during the migration.

These issues require planning and management.

This is why I recommend that every organization performing a cloud migra‐

tion create a migration architect role within the company. The person in this

role should be the single point of decision making for all technical aspects of

the migration and handle all the planning and rearchitecting needed to make

the migration successful. This role can be a full-time job for a large migra‐

tion, or part of a broader architecture role for a smaller migration—but hav‐

ing a single, clearly defined point of contact with responsibility for all

technical decision making is critical.

Moving to the cloud isn’t always painless, but it doesn’t have to be painful.

Avoiding these two common mistakes is an essential part of making your

migration smooth and having it meet everyone’s expectations.

97 Things Every Cloud Engineer Should Know62

1 Excerpt from Accelerating Cloud Adoption: Optimizing the Enterprise for Speed and Agility

(O’Reilly, 2021).

Optimizing Processes for
the Cloud: Patterns and
Antipatterns
Mike Kavis

I’ve been consulting on cloud adoption since 2013.1 Back then, convincing

CEOs and boards that cloud computing was the way forward was a hard sell

for IT leaders. But as public cloud adoption increased, companies moved to

the cloud or built new workloads in the cloud much faster than they had tra‐

ditionally deployed software. Two common antipatterns emerged.

Antipattern 1: The Wild West

Developers, business units, and product teams now had access to on-

demand infrastructure, and they leveraged it to get their products out the

door faster than ever. They had no guidelines or best practices, and develop‐

ment teams took on responsibilities they’d never had before. Rather than

developing a systematic approach and implementing it across the organiza‐

tion, though, many companies simply left cloud decisions to individual parts

of the organization: a lawless, Wild West approach.

Part of the problem was that each business unit or product team was “rein‐

venting the wheel”: each would research, buy, and implement its favorite

third-party tools for logging, monitoring, and security. Each took a different

approach to designing and securing the environment. More than a few also

implemented their own continuous integration and continuous delivery

(CI/CD) toolchains with very different processes, resulting in a patchwork of

tools, vendors, and workflows throughout the same organization.

Collective Wisdom from the Experts 63

Managing Director of Technology/Cloud Practice,

Deloitte Consulting

Companies were delivering value to their customers faster than ever before

—but often exposing themselves to more security and governance risks than

before, as well as delivering less-resilient products. Production environments

became unpredictable and unmanageable because of a lack of rigor and

governance.

Antipattern 2: Command and Control

The opposite of the freewheeling Wild West antipattern was a military-style,

top-down, command-and-control approach. In these companies, units that

were highly motivated to keep things in line—such as management, infra‐

structure, security, and governance, risk, and compliance (GRC) teams—put

the brakes on public cloud access. They built heavily locked-down cloud

services and processes that made developing software in the cloud cumber‐

some. These processes were often decades old, designed during the period

when deployments occurred two or three times a year and all infrastructure

consisted of physical machines owned by a separate team.

This approach destroys one of the key value propositions of the cloud: agil‐

ity. I have seen companies that took six months to provision a virtual

machine in the cloud—something that should take five minutes—because

the command-and-control cops forced cloud developers to go through the

same ticketing and approval processes required in the datacenter.

This approach created little value even as companies spent huge sums on

strategy and policy work, building internal platforms that did not meet

developers’ needs. Worse yet, the approach created an insurgent “shadow

IT”: groups or teams began running their own mini-IT organizations to get

things done, because their needs were not being met through official

channels.

Avoiding Antipatterns

These antipatterns have raised awareness of the need to focus on cloud oper‐

ations and to design a new cloud operating model.

When you move to the cloud for the first time, you are moving to a green‐

field virtual datacenter. There are no processes in place. This is a one-time

opportunity to design processes from the ground up, optimized for the cloud

and its new ways of thinking. You’ll never have a better chance to get this

right. Don’t simply bring your legacy processes and mindsets along for the

ride. Your company’s needs—all those security policies, compliance controls,

97 Things Every Cloud Engineer Should Know64

and operational requirements—are still valid; it’s just how you satisfy them

that needs to change.

Failing to acknowledge that legacy processes designed for another era aren’t

the best way to deliver software in the cloud will most likely result in low

performance. This error in judgment will compound as more workloads

move to the cloud, which can result in catastrophic consequences such as

risk exposure, missed SLAs, and cost overruns. Transforming a culture to be

more DevOps-centric starts with good process hygiene. Pick a process pain

point and optimize it for the cloud. All the technology in the world can’t fix

bad processes.

Collective Wisdom from the Experts 65

Why the Lift-and-Shift
Model Is Unlikely to
Succeed
Mike Silverman

Someone tells you to move your workloads from on premises to a cloud ser‐

vice provider (CSP): “It will be easy; just lift and shift.” Simple, right?

The short answer is no. A CSP and your on-premises environment are very

different. Now you may be thinking, well, duh, you move to a CSP because

there is some capability or feature that you can’t achieve on premises—like

elasticity, resilience, global reach, or economics. All of those are good rea‐

sons to consider a move to a CSP! (Each is discussed elsewhere in this book.)

But when it comes to operating workloads in CSPs versus on premises, the

way they’re managed is quite different.

Consider logging as an example: the output from a CSP will likely differ

from what you get from your on-prem hypervisor (or related systems). Can

you commingle the logs? Unlikely. Perhaps you can map CSP events to your

existing format and keep the same logging infrastructure. If you can, do you

have different rules for on prem versus CSP (probably), and different auto‐

mation or call routing? Does your application need to provide different

event output if running in a CSP versus on prem? All things to consider,

develop, test, and refine.

But that example assumes something that’s probably untrue—that the CSP

can access your logging systems! Those logs are typically behind firewalls

(for good reason). Do you have connectivity from the CSP to behind your

firewall? That can take a while to set up and configure.

As for the application itself, you need to ask whether it will run solely in the

CSP or as a hybrid for some time. If hybrid, what key databases must you

share across the CSP and on prem, what connectivity do you need between

the two, and what is an acceptable latency? What about testing in the new

architectures? How many more scenarios must you consider?

97 Things Every Cloud Engineer Should Know66

Head of Strategy at FS-ISAC

Separately, how do you move your application from on prem to the CSP?

Where are your source code or packages/artifacts stored today? If on prem,

can you move those to the CSP for deployment? It’s not always easy to do

that; you sometimes need different configurations or builds for CSPs.

Many considerations remain beyond the application, infrastructure, and

DevOps teams—for example, security. Many datacenters use an intrusion

prevention system (IPS). Your security team, if it applies the on-prem rules,

will require an IPS running in the CSP that it can control. The problem is

that IPSs tend to need access to layer 2 of the OSI Model, which most CSPs

will not allow. Security (and other) teams need to rely less on specific tools

and rather think at a higher level about what risks an IPS mitigates in the

first place and how the CSP addresses those concerns.

Ultimately, your organization needs to be comfortable with the new roles

and responsibilities, and with not having 100% control of the environment.

Do not underestimate the difficulty in asking people to give up control to a

CSP. Building a comfort level with workloads in CSPs takes careful planning,

research, testing, and time.

And issues to do with lack of control or ownership extend far beyond just

the security team. Examiners and sometimes customers in regulated indus‐

tries previously had the right to audit an environment; while onerous, since

you controlled the environment, you could comply. With CSPs, you typically

do not get the right to audit. You might be able to get the right to examine,

but that is fundamentally different. This may mean a change in customer

contracts, and ensuring that your regulatory agencies are OK with the move

(many now do accept CSPs).

Hopefully you can see that moving from on prem to CSP takes a lot of

thought, coordination, and consideration. Using CSPs requires a learning

curve and maturity. Take the time to do it right.

Collective Wisdom from the Experts 67

PART IV

Security and
Compliance

Security at Cloud Native
Speed
Chris Short

Cloud native technologies, like Kubernetes, are chosen by organizations to

create a competitive advantage. Containers, service meshes, and serverless

computing aim to jumpstart developer productivity. But they can change the

attack surface of applications and infrastructure. We must protect cloud pro‐

vider APIs, developer tooling, and applications. The good news is that we

can use native Kubernetes tooling and cultural changes, like DevOps, to

improve security postures and reduce the blast radius, all while improving

developer productivity.

Struggles

Doing less with more is now the modus operandi for many organizations,

which are moving toward cloud native infrastructure because they need to

make improvements faster. Airbnb became a Marriott competitor almost

overnight. Square and Stripe have changed the way ecommerce works. It’s

hard to imagine being an established organization and not worrying about

market share.

People look to cloud native tooling to improve velocity, but the ecosystem

contains a vast expanse of tools from many organizations. One glance at the

Cloud Native Computing Foundation landscape tells the story: it has an

overwhelming array of tools in categories like service discovery, CI/CD, stor‐

age, and many more.

Velocity

According to a recent industry report, between 2018 and 2019 “the number

of containers that are alive for 10 seconds or less has doubled to 22%.” If that

doesn’t move your needle, maybe this stat from page 23 will: 73% of all con‐

tainers live for 30 minutes or less. That’s right—a majority of containers run

for less than 30 minutes. The market is responding to the increasing demand

Collective Wisdom from the Experts 69

Principal Technical Marketing Manager at Red Hat

for feature delivery. Consumers want more things faster than ever. We want

more feedback, too. Rapid prototyping, DevOps, site reliability engineering

(SRE), and other industry practices have brought us to this point.

Continuous Security

Continuous security should be a part of your pipeline. Securing software at

speed requires automated processes. The last thing anyone wants to do is

slow feature delivery. When security checks occur, they must be iterative and

limited in scope. Gone are the days of security teams showing up at the end

and holding up progress. Continuous security means security can’t be a gate,

but it can be a process ID (PID)—preferably, lots of PIDs throughout the

pipeline and life cycle.

Platform Security

Securing platforms to reduce the blast radius is a vital part of cloud native

security. Kubernetes is at the center of it all, but there is no silver bullet for

securing Kubernetes. Security tooling in Kubernetes takes a layered

approach down to the pod level. Kubernetes distributions provide role-based

access control (RBAC), identity and access management (IAM), logging,

auditing, and many other tools. Excellent platform security also uses security

features that are parts of Kubernetes and Linux, such as:

SELinux

Developed by the National Security Agency (NSA) in the early 2000s to

secure Linux for government systems, SELinux has become a vital tool

in defending against upstream Kubernetes vulnerabilities.

Secure computing mode (seccomp)

This kernel feature, which filters system calls to the kernel from a con‐

tainer, prevents a container from executing calls not already on a prede‐

fined list.

Control groups (cgroups)

Control groups manage system resource usage—CPU, memory, disk

I/O, etc.

Security policies

Policies can codify business requirements and apply them cluster-wide.

Although not a security feature, namespaces divide cluster resources among

users, reducing the blast radius.

97 Things Every Cloud Engineer Should Know70

Practitioners cannot forget that the security landscape is ever-changing.

They should keep an eye on the Open Web Application Security Project

(OWASP) Top 10. Using static analysis of code at rest and dependency scan‐

ning tools is encouraged. The security posture can be improved by pulling

trusted base images from trusted registries.

Speed Makes Us Safer

Safety can no longer be slow, methodical, and checklist-based. Concepts like

DevOps have challenged assumptions about safety in software, and shown

that automating our security and safety features brings many advantages.

When security is automated, it runs at the same velocity as software develop‐

ment teams. Teams can test the resilience of their systems and continue to

harden them as part of feature delivery. This results in less downtime, faster

average recovery times, and speedier feature delivery to our customers.

Collective Wisdom from the Experts 71

Essentials of Modern
Cloud Governance
Derek Martin

There are four essential elements to consider when developing a governance

structure for your cloud journey. Failure to address these points frequently

leads to a variety of pains that are difficult to undo. These four elements are

as follows:

• Subscriptions matter.

• The network has to come first.

• Security is essential.

• Automation is required.

Subscriptions Matter

The fundamental container of resources in Azure is the subscription. How

many subscriptions do you need? Start with three and grow beyond that

based on these conditions:

• Subscription capacity is exhausted.

• Acquisition and ownership (not just management) of Azure resources

takes place in multiple geographical/political/regulatory jurisdictions.

• The “thing” being deployed to Azure is part of your company’s “cost of

goods sold.”

This works for most companies. The first subscription is Production, where

no standing security access exists (except for your CI/CD runners) outside of

Reader roles. The second is Not Production. This subscription is where coor‐

dinated nonproduction tiers exist (Dev, Test, Int, Stage, PreProd), with an

increasing security posture as the tier level approaches production. The third

is your Hub subscription, where core networking, ExpressRoute circuits, etc.

97 Things Every Cloud Engineer Should Know72

Principal Program Manager for Microsoft Patterns and Practices

are housed and heavily restricted. Visual Studio subscriptions should be pro‐

vided to developers and IT pros for them to learn and do playground-based

work. Keep a tight policy lock on these to prevent data exfiltration. When the

developer or IT pro is ready to integrate with others, they move into the con‐

trolled Not Production subscription.

The Network Has to Come First

You cannot govern the cloud without a stable network topology. No amount

of serverless or PaaSification of your environment eliminates the need for

proper design, operation, and control of networking. These designs tell your

application how to operate securely, fail over, and survive a data loss. Ignor‐

ing the network is a tragic and expensive mistake. You need not use hub-

and-spoke routing and record all traffic. Other solutions exist that better

lend themselves to modern network security and intrusion/breach preven‐

tion than forced tunneling, like Azure Security Center, Monitor, and Advisor

for detailed, live introspection on what is happening in your environment in

a correlated manner.

Security Is Essential

Implementing least privilege access and regular account reviews is essential.

RBAC, principally applied at the resource group level via automation with

zero standing access to production, helps prevent a whole host of unwanted

experiences. Adopting an “assume breach” stance for everything allows you

to focus your data protection efforts where they matter most: in the source

system. Subscription-level access should be limited to your automation

accounts, break-glass account, and audit solutions (read-only). Privileged

identity management and multifactor authentication (MFA) for sensitive

operations should be the norm. The need to “see” things via the portal or

CLI should diminish the closer you get to production. For example, it is not

necessarily true that the SQL administrators need full permissions to the

resource groups where the SQL servers are located. Perhaps they need only

Reader rights, or no rights except to the emitted logs. You should never allow

a change to production absent automation. If you do, your disaster recovery

strategy is invalid.

Automation Is Required

You cannot effectively manage the cloud via the portal. You cannot effec‐

tively govern or secure the cloud without automation. There are simply too

many moving parts, too many places to make a mistake, and far too many

Collective Wisdom from the Experts 73

neat little buttons to push. Starting in your development tier, teams should

have portal access to help craft automation scripts that include not just the

application, but also the infrastructure and the configuration. As you move

closer to production, the rights should be reduced at each tier until nothing

but access to the emitted logs remains. This final step is hard and represents

an ongoing journey. Reasons will always exist for deviation from automa‐

tion, but those should be backported to your CI/CD pipelines to return your

environment to an automated state for deployments, monitoring, and

recovery.

97 Things Every Cloud Engineer Should Know74

Know Where the Secrets
Are Kept and How
Emmanuel Apau

The first order of business for a cloud engineer is ensuring you have a thor‐

ough understanding of where and how the secrets are secured. This knowl‐

edge will allow you to build an environment founded in security and provide

protection from future accidents.

Let’s answer the obvious question: what is a secret? Secrets are the organiza‐

tion’s sensitive data; for example, passwords, certificates, application creden‐

tials, and API keys. I categorize secrets into two buckets: user and

infrastructure/application. Each requires a different management workflow.

So what is secret management? Secret management is the central mechanism

used to secure this sensitive data. There are three workflows to take into con‐

sideration when determining management methodology.

How Do We Share Secrets Between the
Infrastructure and the Applications?

As cloud services and microservices proliferate exponentially, so does the

need to ensure they can communicate with each other securely. Most cloud

providers provide a means to manage this. However, it’s the responsibility of

the engineers to build the organization’s conventions as a wrapper to these

SaaS options. This wrapper could be an internal web app, a command-line

tool, or checks during a CI phase that cover the following:

• The environment the secret exists for (development, staging, produc‐

tion, or global)

• The secret name

• The description

• Whether the secret needs to be rotated, and how often

Collective Wisdom from the Experts 75

CTO, Mechanicode.io and Cofounder, Black Code Collective

• Whether the secret has an expiration time to live (TTL)

The TTL will typically be double the rotation time, if one exists, to account

for rolling back in case of disaster:

Environment Name Description Rotation TTL Expiration TTL

Production mysql_user MySQL admin user 60 days 120 days

How Do We Audit Our Secrets?

A cloud engineer needs to understand how change management comes into

play for a secret.

A secret triggers different events as it passes through its life cycle. These

events should cover which user/application caused the following to change:

• Creation date

• Modified date

• Expiration date

• Version number

Some level of versioning should exist so that it’s possible to roll back to a

previous state in case of a disaster.

Hooking into this event life cycle is imperative in keeping us aware of critical

events such as secret expiration. These alerts will save team members a lot of

sleepless nights, and provide them with more ownership over the ecosystem.

97 Things Every Cloud Engineer Should Know76

How Do We Share Secrets Among Users?

Sharing secrets among users is a simple concept that has led to many security

issues, as this requires human intervention. The shortest paths to sharing

secrets—email, instant messaging, hardcoding them into source code, etc.—

have led to many unintentional security leaks.

You will want a solution that accounts for encrypting the data in flight to

ensure secure transmission. Many SaaS options are available that account for

this already, but when SaaS is not an option, password managers that are

stored on the team’s shared drives can be accessed by a shared primary

password.

This user workflow is one that cannot be automated away and should be a

priority for an organization to have documented and included in employee

onboarding and security training.

Best Practices

So now that you are aware of your duties as a cloud engineer, you should

consider a few points about secret storage, for whichever solution your orga‐

nization decides to go with:

Rotate encryption keys

Ensure that the cryptographic keys used to protect the organization’s

sensitive data are changed periodically to ensure security.

Identify management

Determine who in the organization can manage secrets and to what

degree.

Ensure encryption

Make sure secret data is encrypted at rest and in flight during retrieval

requests via an API.

Collective Wisdom from the Experts 77

Don’t SSH into
Production
Fernando Duran

Routine server system administration tasks should be handled with automa‐

tion and services, through code and software. Not logging in to system con‐

soles for manual routine maintenance can be seen as an indicator of

capability maturity.

Logins to critical servers via SSH should be audited to determine who

accessed the servers and what they did. Auditing can get complex when

accessing servers via SSH is the standard policy and when considering cases

like SSH forwarding and tunneling.

As a test, before logging in to a server to carry out a task, ask yourself the

following:

• Was this task tested first in a dev/QA/test environment?

• Is this a one-off task (versus a routine task or request)?

If you answer no to either question, you should reconsider your workflow

and think of ways to automate away the kind of work you SSH for.

Let’s review some common reasons a cloud engineer would want to log in to

a server:

• To examine logs, like application, container, or operating system logs.

This is a solved problem. Using a stack like Elasticsearch, Fluentd, and

Kibana, or a third-party logging service in the cloud, will provide log

aggregation, search, visualization, and permanent storage capabilities,

with a proper life cycle and backups.

• For monitoring, to look at server telemetry like CPU/RAM/disk usage or

exposed application performance metrics. This is also a solved problem;

we have a myriad of commercial and open source tools at our

disposition.

97 Things Every Cloud Engineer Should Know78

DevOps Team Lead at Kira Systems

• For routine changes in the system, such as making configuration

changes, patching the operating system, managing software installations

and upgrades, and performing backups and restores. All these changes

should ideally be done using infrastructure as code. We declare in code

(which we keep versioned) our infrastructure and make our changes in

code. Then, depending on our workflow, philosophy, and tooling, we

can use configuration management tools, or we can re-create the server

image, or we can use our favorite coding language and take advantage of

the cloud vendor’s software development kit (SDK) or API.

• Running tests. “Testing” in production can be needed to get a real view

of application behavior; fake test data rarely behaves like the real thing.

Or we may need to run a query that is not shown in a reporting server.

While these are valid tasks, we should still avoid ad hoc manual opera‐

tions and look into replacing them with code and systems that will per‐

form such operations with less risk.

• “My server is a snowflake that needs constant TLC.” Look into “cattle

versus pets,” because you have some problems.

• “I don’t know what is running on this server or what this server is sup‐

posed to run.” You have bigger problems you need to address.

There are a few valid reasons to SSH into a production server that is part of

an application running in the cloud. Sometimes while troubleshooting, we

need to log in to a server as a last measure because the information we have

from the log and metrics servers is not enough to determine the cause of a

problem. For example, we may not be getting logs or metrics themselves, or

we may have network issues of the type “this host doesn’t seem to be able to

talk to this other host” and we want to verify that connectivity. We may also

have hard Linux kernel issues, or strange behavior not explained by logs or

indirect information. Another reason to SSH into servers is for the purpose

of exploration or learning for new people in a team.

In any case, the next time you are about to log in to a server, stop and think:

“How could I accomplish this task without manually getting into the server?”

Collective Wisdom from the Experts 79

Identity and Access
Management in Cloud
Computing
Isuru J. Ranawaka

Cloud computing provides a shared network, computing capacity, memory,

and storage on demand for a vast set of concurrent consumers. Concurrent

access to shared resources has increased security loopholes and threats to the

services running on cloud resources. Hence, identity and access management

(IAM) is an imperative requirement in cloud computing. A cloud engineer

should impose high application-level and network-level security compared

to archaic approaches to avoid threats such as phishing attacks, denial-of-

service attacks, and man-in-the-middle attacks. This article describes popu‐

lar IAM patterns used in cloud computing.

Cloud-based clusters are primarily categorized into public clouds, private

clouds, and hybrid clouds. Public clouds are offered by third-party providers

over the public internet, making them available to any interested parties. Pri‐

vate clouds are isolated from public clouds and are operated on more secure

private networks. Hybrid clouds combine private and public clouds. Further‐

more, cloud-based clusters are exposed through different models, such as

infrastructure as a service (IaaS), platform as a service (PaaS), software as a

service (SaaS), and serverless.

Nowadays, a wide variety of free and commercial applications use IaaS, PaaS,

SaaS, and serverless models. For instance, science gateways have been devel‐

oped to enable research communities to easily manage and run their experi‐

ments on high-performance computing (HPC) systems. Those gateways are

integrated into middleware that connects to the HPC cluster and manages

experiments on behalf of gateway users. This multitenant middleware should

be capable of providing seamless access to HPC resources for end users.

HPC clusters are widely deployed on private clouds with high security privi‐

leges. Hence, accessing HPC resources requires specific SSH keys,

97 Things Every Cloud Engineer Should Know80

Senior Full-Stack Cloud Developer

certificates, and password credentials. Thus, credential management,

authentication and authorization, resource sharing, and access control are

trivial requirements.

Furthermore, consider an application development platform that exposes

APIs to develop retail support applications such as online shopping and data

analytics apps. This platform should connect to Salesforce services, Shopify

services, Google services, and Facebook services. End users create accounts

on the platform and don’t know of the existence of backend cloud services.

Hence, the middleware should be able to successfully orchestrate cloud serv‐

ices, manage access credentials, and handle API authorization for cloud

services.

By considering the aforementioned use cases and widely used industry prac‐

tices, we can identify the basic elements of IAM as identities and groups,

relationships, credentials, and entitlements. User accounts, user groups, user

claims, user attributes, and user roles are amalgamated as identities and

groups. Relationships describe the dependencies between identities, groups,

attributes, and roles. Credentials represent the access keys of users and

resources. Entitlements describe the access policies for users, groups, creden‐

tials, and relationships. Role-based access control, group-based access con‐

trol, attribute-based access control, and policy-based access control are

widely used access control principles.

IAM patterns are articulated from the aforementioned IAM elements. Dele‐

gated identity management (DIM), federated identity management (FIM),

sharing, and synchronization are the most popular IAM patterns. The DIM

pattern employs identity brokers to connect with external identity providers

(IdPs), and identity brokers are responsible for just-in-time (JIT) provision‐

ing. FIM agrees to trust different domains to allow applications to consume

services across domains via a single user identity. Identity federation is cate‐

gorized into inbound identity federation and outbound identity federation.

Inbound identity federation allows external users to consume internal serv‐

ices, while outbound identity federation allows internal users to consume

external applications. Sharing enables the common use of elements of IAM

for services and applications. However, sharing may have limitations if user

stores and applications reside in different domains. Synchronization is used

to replicate data stores and application stores among different services.

Numerous technologies and protocols are used to implement the aforemen‐

tioned IAM patterns. OAuth 2.0 is an industry-standard protocol for author‐

ization. This simplifies client development and integration with identity

servers. OAuth 2.0 is built on elements such as scopes, grant types, and client

Collective Wisdom from the Experts 81

types. Scopes limit access to user identities for applications. Grant types are

OAuth flows of user authentication; widely used grant types include Author‐

ization Code, Client Credentials, Resource Owner Password, and Refresh

Token. OpenID Authentication 2.0 is an authentication federation protocol

that relying parties can use to obtain verified identities from IdPs. OpenID

Connect is an extension of OAuth 2.0 that is used by clients to obtain users’

account attributes via claims. The System for Cross-domain Identity Man‐

agement (SCIM) protocol is used to synchronize user stores residing in dif‐

ferent domains.

Using IAM elements, IAM patterns, and integration protocols, numerous

IAM cloud solutions are developed and consumed by a wide range of serv‐

ices and applications. Single sign-on (SSO), shared logins, service accounts,

multifactor authentication, and identity linking are the most popular iden‐

tity solutions provided by vendors in the security industry.

97 Things Every Cloud Engineer Should Know82

Treat Your Cloud
Environment as if It Were
On Premises
Iyana Garry

There is a saying in the industry that goes, “The cloud is just someone else’s

computer.”

However, if you’re storing sensitive information and user credentials in a

cloud environment, should you treat that environment as if it were just

someone else’s computer? Cloud engineers manage data in the cloud, but

what could happen if this data is unprotected?

A 2019 study by the security research firm Proofpoint found that 92% of

Fortune 500 companies’ cloud accounts had been attacked. These attacks

could have been avoided if the companies had taken the time to harden their

cloud environments as if they were on premises.

The following is a list of precautions to take in order to ensure that you’re

managing your cloud environment in a secure way:

• When configuring cloud infrastructure, one of the first lines of defense

is encryption of at-rest and in-transit data. An SSL/TLS certificate and

user credentials should be generated to enable HTTPS and SSH traffic.

In addition, a firewall should be configured with inbound rules for that

traffic, and each cloud server should have its own set of user credentials.

• Check that cloud account credentials are not hardcoded into any soft‐

ware. This includes version control repositories, public and private.

Also, user credentials should be changed frequently. Your cloud plat‐

form may have a key management service that centrally stores and

rotates the credentials for your servers.

• Each network service (the web server, database server, email server, etc.)

should be run on its own instance. This makes it difficult for attackers to

access all of the assets.

Collective Wisdom from the Experts 83

Cloud Penetration Tester

• As burdensome as it may be, use two-factor authentication (2FA) when‐

ever you log in. Unless an attacker also has access to your mobile device,

this can help prevent them from infiltrating your cloud account.

• Change the default configuration files and port numbers for your serv‐

ices. If you are using default configurations, your environment is at risk

because attackers will know where to look once they are able to infiltrate

with your user credentials. Give them a hard time and leave

that /var/www/html directory empty.

• Use your platform’s monitoring and logging service to notify you when

suspicious activity and/or traffic is detected and to log as many assets as

you can: your servers, cloud virtual private network (VPN), file storage

system, etc. If an attack is implemented in your environment, logging

helps you determine which assets are being targeted.

• Although it may not seem like it, maintaining availability of your resour‐

ces is a security practice. An attacker may not aim to infiltrate your envi‐

ronment, but prevent legitimate web traffic from flowing through it by

flooding it with a distributed denial-of-service (DDoS) attack. Configur‐

ing a load balancer and a web application firewall (WAF) in your envi‐

ronment can help mitigate such attacks.

• Finally, back up your cloud assets frequently. In the event that an

attacker infiltrates your account and wipes all your data (or possibly

worse, if you or someone in your organization unintentionally wipes all

the data), you need a copy to restore all of it. Whether you store your

backups on removable media or use your platform’s backup service, if

one is available, this step is a vital part of securing your data.

Of course, you don’t have to follow any of this advice. You may continue to

make cloud penetration testers’ jobs like mine easier instead. :)

97 Things Every Cloud Engineer Should Know84

You Can’t Get
Information Security
Right Without Getting
Identity Right
Sarah Cecchetti

Security is Job Zero for every cloud engineer. It is critical to remember that

in a cloud environment, you are building for multiple tenants who should

never be able to access or change one another’s data. Every permission has to

be perfect every time. The subfield of information security that handles peo‐

ple and permissions is called identity and access management—and it’s a fas‐

cinating field!

The place where you store users’ information is called a directory or identity

store. If you don’t have existing users, their information will be collected

when they sign up with your application, and stored in your directory. If you

do have existing users, you may want to consider a federation model. Such a

model uses existing credentials (usually a username and password) to log

users in, so that they don’t have to go through the hassle of creating a new

account. The most popular federation standards are Security Assertion

Markup Language (SAML) and OpenID Connect (OIDC).

The most secure way to have users log in is through multifactor authentica‐

tion. For this you want the user’s credentials to cover two of these three cate‐

gories: something they know (like a password), something they have (like a

phone), or something they are (like a fingerprint). When I log in, I use a

cryptographic token called a YubiKey. I wear mine as an earring so I never

lose it! One of the most common ways to have a user confirm something

they have is to send them a text message. While this method of multifactor

authentication is a breeze to deploy, it’s not very secure. Text messages are

sniffable by off-the-shelf hardware and software, and they are vulnerable to

SIM-swapping attacks that can allow an attacker to gain access to a valid

Collective Wisdom from the Experts 85

Principal Product Manager, AWS Identity, and Cofounder, IDPro

user’s phone number. Many other ways exist to have a user confirm some‐

thing they have, including authenticator phone apps, USB security keys, and

one-time-password devices.

Once a user is logged in, they often need to delegate authorization to differ‐

ent applications in their tenant environment. For instance, they might want

to authorize a travel application to access their name and passport number.

It is tempting as a cloud engineer to allow an application to use the username

and password of a user in order to access the user’s data. Resist this tempta‐

tion! Delegated authorization is most safely done through an identity stan‐

dard called OAuth 2.0. You can easily build an OAuth 2.0 token endpoint

into your application that will mint access tokens for applications so that

they can access APIs on behalf of the user. These tokens are limited in what

they can access, and for how long, so that the user’s data is protected and

their password isn’t being passed between applications.

Once a user has completed their tasks, it’s important to log them out and

revoke any access tokens that are no longer needed. How soon you log out

users depends on your application. If you have an application that doesn’t

deal with sensitive user data, you may want to keep users logged in for days

or even months. If your application handles data of a personal nature, like

medical or financial data, you may want to log users out as soon as they close

the application.

Whatever identity experience you build, remember that it’s the front door to

your application. It needs to be both welcoming and secure. Having a terri‐

ble identity experience is especially bad for users, because proving their iden‐

tity isn’t what they’re trying to do in the first place. If they are frustrated

before they even get to the application, they are likely to have a bad overall

experience. Make sure that you’ve architected and tested your identity expe‐

rience so that it’s simple, easy, and safe for your users.

97 Things Every Cloud Engineer Should Know86

Why Are Good AWS
Security Policies So
Difficult?
Stephen Kuenzli

Why is AWS IAM so @!#^$ hard?

—Every cloud engineer

Short answer: first because the powerful AWS security model is complex,

and second because modern application deployments change rapidly. Let’s

examine why configuring good AWS security policies is so difficult.

The AWS Security Model Is Powerful but
Complex

In the cloud, capabilities are delivered using services configured via APIs.

Security capabilities are no exception. AWS security APIs enable customers

to fulfill their security responsibilities within the AWS shared responsibility

model.

Customers control access to their cloud resources and data by configuring

security policies in the AWS security services. These security services evalu‐

ate the policies to allow or deny access. They include the organization’s IAM

services, and more than 20 data services that support resource policies.

Five types of AWS security policies determine whether an API action will be

allowed: Service Control, Identity and Access Management, Resource,

Boundary, and Session. Expert users of these security services can create

robust access controls.

But this large set of security services, resources, and policy language is com‐

plex, difficult to understand, and hard to test without breaking things. Engi‐

neers need to understand and configure multiple policies to protect data. For

S3, engineers must usually configure IAM policies, an S3 bucket resource

Collective Wisdom from the Experts 87

Founder of k9 Security

policy, and service-specific access controls like S3 access control lists (ACLs)

and public access configurations.

How Policies Are Evaluated

The core concept of the AWS security model is as follows:

Security policies associated with a principal or cloud resource control how a

principal may interact with that resource.

A principal could be an IAM user, an AWS account, or an unauthenticated

person from the public internet. Policies grant principals permission to

access a resource. Policies are attached to the principal or the resource, such

as an S3 bucket.

Consider applying the principle of least privilege, a security best practice.

Engineers create a role for each application component and an IAM policy

that allows the application to execute only the AWS API actions needed by

the application.

Good news: principals are granted no access by default, and you can build

access incrementally. Bad news: constructing least privilege IAM and

resource policies by hand is difficult. AWS uses all the types of security poli‐

cies during the access decision-making process. It’s easy to get something

wrong, even for experts.

Did you notice there are two paths for accessing a resource that supports

resource policies? Look for the green end states.

Both a resource policy attached to a bucket and an IAM policy attached to an

IAM principal may grant access to an S3 bucket. If either the bucket or

attached IAM policy allows access to the bucket, the IAM principal is gran‐

ted access.

To grant least privilege, engineers must carefully engineer conditional access

in policies:

• IAM policies should limit which resources a principal may access using

resource conditions; e.g., allow the firewall role to access the logs bucket,

not all buckets.

• Resource policies should allow intended principals and deny everyone

else; e.g., allow the credit-processor role to access the credit-applications

bucket and deny everyone else.

And then get ready for change.

97 Things Every Cloud Engineer Should Know88

Cloud Deployments Change Rapidly

The number of identities used to manage and operate technology services is

growing rapidly. Both business and technology trends drive this growth.

First, successful organizations grow. Second, organizations are decomposing

application architectures to scale application ownership across teams. Third,

organizations that deliver application changes quickly and safely to custom‐

ers have a competitive advantage.

This growth and change is good for the organization, but stresses engineers

writing and reviewing policies without support.

Summary

Cloud security policies are complex and difficult to validate. Cloud deploy‐

ments’ identities and resources are growing and changing quickly. Adopt

practices that simplify the way practitioners understand and secure cloud

deployments and integrate with automated delivery processes to protect

data.

Collective Wisdom from the Experts 89

1 Thomas Ristenpart et al., “Hey, You, Get Off of My Cloud: Exploring Information Leakage in

Third-Party Compute Clouds,” Proceedings of the 16th ACM Conference on Computer and Com‐

munications Security (November 2009): 199–212, https://doi.org/10.1145/1653662.1653687.

2 Clementine Maurice et al., “Hello from the Other Side: SSH over Robust Cache Covert Channels

in the Cloud,” Network and Distributed System Security Symposium (February 2017), https://

doi.org/10.14722/ndss.2017.23294.

Side Channels and Covert
Communications in Cloud
Environments
Will Deane

Side-channel attacks abuse information leaked by the processing system,

rather than directly attacking the system itself. Attackable side channels

include analysis of power, electromagnetic emissions, acoustics, heat, and

timing. Historically, side-channel attacks were predominantly focused on

cryptographic systems. With the adoption of hypervisors and cloud comput‐

ing, recent research has focused on cross–virtual machine side channels,

mostly using CPU cache timing techniques. Even though side-channel

attacks are typically slow and often provide only partial data recovery,

sophisticated attacks have been demonstrated in public clouds, including

stealing encryption keys and creating covert channels between cooperating

non-networked systems.

In 2009, researchers from the University of California and the Massachusetts

Institute of Technology published a paper demonstrating techniques for

coresiding an attacker’s virtual machine on the same physical host as a vic‐

tim in Amazon EC2.1 They also demonstrated some basic side-channel

attacks, including low-bandwidth covert channels between cooperating core‐

sident hosts using both hard disk and memory bus contention timing. By

2017, researchers from Graz University of Technology in Austria had devel‐

oped a practical covert channel providing 45 KBps of bandwidth using CPU

cache timing.2 They implemented a Transmission Control Protocol (TCP)

97 Things Every Cloud Engineer Should Know90

Director at ASX Consulting Ltd

stack on top of this channel and demonstrated streaming a music video

across the channel at Black Hat Asia 2017.

So, what do those attacks mean for the use of public cloud infrastructure?

For covert channels, an attacker has to get their code running on the victim

virtual machine and also get their VM coresident on the same physical host.

Lots of methods can be used to get malware onto a running system, but for

typical cloud workloads, common techniques include the following:

• Using stolen credentials

• Phishing developers or DevOps

• Attacking supply chains

• Compromising CI/CD pipelines

The coresidence requirements can be met by brute-forcing virtual machine

creation and testing for coresidence with the victim; this is made easier if the

attacker’s code is already running on the victim VM.

These requirements suggest that cloud users processing sensitive data on vir‐

tual machines without direct internet connectivity who are subjected to

threats from well-funded, sophisticated threat actors are most at risk from

these attacks.

For traditional side-channel attacks, cryptographic keys are most at risk; for

example, keys associated with Transport Layer Security (TLS) services. These

attacks don’t need software running on the victim machine; however, this

makes confirming coresidency more difficult. These attacks are also prone to

noise-based errors, and at the time of writing, I’m not aware of any practical

demonstrations of real-world key recovery from realistic public cloud

workloads.

It’s said the NSA has a saying: “Attacks always get better; they never get

worse.” Research into side-channel attacks seems to follow this axiom. In

January 2018 details of the Spectre and Meltdown vulnerabilities affecting

CPUs were published, with further related vulnerabilities published through‐

out 2018, including Spectre-NG, ret2spec, SpectreRSB, and NetSpectre, to

name a few. This trend continued in 2019 with related attacks published

including Fallout, RIDL, ZombieLoad, and Spectre SWAPGS.

Although many of these issues can be remediated with software patches,

some (such as cache timing attacks) abuse underlying hardware operations

and require hardware architecture changes to mitigate—something that isn’t

going to happen in the short to medium term.

Collective Wisdom from the Experts 91

If you are running sensitive workloads at risk of side-channel attacks in pub‐

lic clouds, all of the major IaaS suppliers provide options to use hardware

dedicated to you, removing the option for an attacker to become coresident

with your virtual machines. AWS offers Dedicated Instances, Azure has Iso‐

lated Instances and recently announced Dedicated Hosts, and Google Cloud

has sole-tenant nodes. These options all cost a little more than their standard

shared tenancy offerings, typically in the range of 6% to 10% for pay-as-you-

go pricing.

Organizations should consider the risks of side-channel and covert commu‐

nication attacks to their public cloud–hosted systems and decide whether to

accept the risks or pay the additional cost for sole-tenancy hardware.

97 Things Every Cloud Engineer Should Know92

PART V

Operations and
Reliability

When in Doubt, Test It
Out
Dan Moore

When I taught AWS certification courses, I’d often get questions about how

a service behaved under load or other unusual circumstances. Frequently, I

could answer from personal experience or by asking other instructors; occa‐

sionally, class members provided their insights. Sometimes I could dig up

relevant vendor documentation.

However, my default answer was, “Test it for yourself. There’s no substitute

for testing.”

This is one of the great advantages of the cloud. When you have a question

about the performance or behavior of a service or system, spin it up and test

it. This will cost you money and time configuring the system, but certainly

will be cheaper than ordering hardware, racking it, and then also configuring

the system. When you’re done with your testing, you can tear down the

infrastructure and never worry about it again. This sure beats shipping a

server back to the manufacturer.

Of course, no testing scenario can replicate production perfectly. But you

can get pretty close (especially if you can reuse production traffic).

When you do test, start by documenting what you want to achieve. What is

the question you are trying to answer? Make sure to seek feedback from

other team members and/or search online, as it’s possible someone has

already answered your question. If you do find answers, understand under

what circumstances the tests were performed, as the cloud and the offered

services change over time.

Here are some examples of cloud infrastructure questions you might want to

answer:

• How do Elastic Block Service (EBS) volumes of different sizes and types

perform under load?

97 Things Every Cloud Engineer Should Know94

Principal at Moore Consulting

• When a Kubernetes cluster running on Google Kubernetes Engine

(GKE) is under load, what happens when you add an additional node?

An additional pod?

• What happens when you turn off a network address translation (NAT)

gateway while a file is being uploaded to S3 from an EC2 instance in a

private subnet (without an S3 VPC endpoint)?

• What is the cold start time for an empty Azure function? What about a

function loading your DLLs?

Think about what steps you are going to take to try to answer the question.

With your question and methodology spelled out, spin up your testing envi‐

ronment. Having your infrastructure represented as code will make this

faster, especially if you have a complicated environment. If you are creating

the test environment manually, record settings and other configuration in a

text file so you can re-create the environment later.

Run your tests. If you are load testing, find an open source or commercial

load-testing tool. What you need depends on your goals: you need a different

tool to test 100,000+ simultaneous users on a website than you do when try‐

ing to understand how an internal API handles 100 requests per second.

Review the data to see if it answers your question. More questions or areas of

interest may appear. Adjust your tests to answer them.

Once you have your answers to the desired level of certainty, tear down your

testing infrastructure. Document what you tested, how you tested, and your

results. Circulate this internally to help your team. If possible, publish it on

your company blog to both help others in the same boat and boost your

company’s standing in the community. All the vendor documentation in the

world is no substitute for rolling up your sleeves and testing.

Collective Wisdom from the Experts 95

Never Take a Single
Region Dependency
Derek Martin

Enterprises of all shapes and sizes frequently make a tragic mistake when

migrating to the cloud: “Hooray, I no longer have to have a disaster response

or business continuity plan; Microsoft/AWS/Google will take care of it!” It’s

true, the cloud is a highly resilient place to migrate your enterprise to; but at

its most basic, even the cloud is composed of physical servers and run by

human beings. Things break, catch fire, go boom, and are occasionally sus‐

ceptible to human error. So, when migrating to the cloud, take this first and

most important lesson with you: never take a single region dependency!

Azure provides a variety of solutions to help you be successful, including

these:

Redundant storage

Keep multiple copies of your data in multiple physical locations.

Availability zones

Run your solutions in multiple data halls/facilities in a single region.

Backup

Enable file-level restorations for when files go missing.

Site recovery

Fail over VMs from one region to another with a very tight recovery

time objective/recovery point objective (RTO/RPO).

Each stock-keeping unit (SKU) within Azure takes a slightly different

approach to regional resiliency, and your enterprise needs to consider those

methodologies for each of your applications. For example, Azure SQL Data‐

base can automatically regionally fail over in the event of a disaster. Cosmos

DB distributes reads and writes globally without additional configuration.

97 Things Every Cloud Engineer Should Know96

Principal Program Manager for Microsoft Patterns and Practices

Consider the service-level agreement (SLA) of each Azure SKU in your

application as well as its regional resiliency plans. Then work backward to

your final design. Here are some major points to keep in mind:

• Always have a break-glass account ready; this should be a cloud-only

identity without multifactor identification and locked in a vault.

• Network failovers should be automatic. Leverage zone-aware infrastruc‐

ture and global endpoint routing, offered by services like Traffic Man‐

ager and Front Door. Have network routes that can easily adjust based

on a variety of outage conditions.

• Practice your failover—the best-prepared companies do not rely only on

tabletop exercises. Fail over your environment frequently, and do it in

production. Site recovery can help with your VM failover and failback.

• Your application must support multiregion awareness. Typically, this

isn’t hard for the frontend, but the data tiers will require careful consid‐

eration of the RTO/RPO.

• No two regions are exactly alike. This is by design. Careful planning is

required to make sure the SKUs you need are available in your chosen

failure region.

• If you are not relying on geo-redundant storage (GRS) as part of your

disaster recovery strategy, do not use the peered region as your failover.

In the event of a disaster, the peered region will be quite constrained. If

you aren’t using GRS (which requires you to fail to the paired region),

fail out somewhere else!

• A resource group has a region assignment. Resources inside the resource

group need not be in the same region. Control plane operations of all

resources in that resource group happen in the region to which it is

assigned. In the event of a region failure, the resources inside that

resource group will not be able to be controlled, even if those resources

are in a different region (although they will be running just fine).

The most resilient organizations run applications and systems in multiple

regions in production. In the event of a regional failure, some applications

may be degraded because they fail over to another region running smaller or

less expensive SKUs. Other applications will remain healthy. These organiza‐

tions leverage Azure Virtual Network (VNet) peering and traditional hub/

spoke or full mesh connectivity to make the entire organization as regionally

independent as possible. They practice. They automate. They audit. They

survive!

Collective Wisdom from the Experts 97

Test Your Infrastructure
with Game Days
Fernando Duran

“You don’t have a backup until you have performed a restore” is a good

aphorism, and in a similar way, we can say that your service or infrastructure

is not fully resilient if you haven’t tried breaking it and recovering.

A game day is a planned rehearsal exercise in which a team tries to recover

from an incident. It tests your readiness and reliability in the face of an

emergency in a production environment.

The motivation is for the teams and the code to be ready when incidents

occur; therefore, you want the test incident to resemble a real-life incident.

When you run these experiments in production environments and in an

automated way, this is called chaos engineering.

There are several items to consider when preparing for a game day. Most

importantly, you need to decide whether you are running the exercise in

production. This is the ideal, since any staging or test environments are

never really going to be the same as production. But on the other hand, you

have to comply with your SLAs, obtain approval, and warn customers if

needed. If you have never done a game day or if the target system has never

been tested for disruption, then start with a test environment.

Another decision is whether you want the procedure to be planned and trig‐

gered by an adversarial red team—in this case, one team or person very

familiar with the system will create the failure without warning.

You’ll want to run these game days periodically (every four or six months,

for example), as well as after a new service or new infrastructure has been

added. This time frame may also depend on the recent history of past

responses to real incidents. An incident exercise should run for a few hours

at most; you don’t want long-lived lingering effects.

97 Things Every Cloud Engineer Should Know98

DevOps Team Lead at Kira Systems

Different types of failure can be introduced at different layers:

• Server resources (such as high CPU and memory usage)

• Application (for example, processes being killed)

• Network (unreliable networking or network traffic degradation: adding

latency, packet loss, blocked communication, DNS failures)

Gray failures (degradation of services) are often worse than complete

crashes, since the latter have a short feedback loop. Also, degradation can be

hard to produce.

Before running a game day, you need to determine the following:

• The failure scenario or scenarios

• The scope of systems affected and what can go wrong (having a con‐

tained “blast radius”)

• The condition of victory, or acceptance criteria for the system to be con‐

sidered “fixed”

• The time window for recovery—estimate the duration and add 2× or 3×

just in case

• The date and time

• Whether you are warning beforehand

• The team or people on call at the time who will handle the incident

You also need to prepare the response team(s) and how they are going to

work. A common approach to incident management is to have one person

focused on solving the problem surrounded by supporting people or teams

so that person doesn’t have to worry about anything else. For communica‐

tions, a chat channel is better than email or phone since it works in real time,

allows multiple people to collaborate, and leaves a written log.

The incident manager—the person leading the response team—doesn’t have

to be a manager or the person who is most familiar with the system. Indeed,

it’s better for knowledge dissemination that it be a different person. Besides,

you want to make sure you don’t have a “bus factor” of one. If there are run‐

books to recover from an incident, this is also a way to test such documenta‐

tion, by having someone different from the author going through it.

Collective Wisdom from the Experts 99

You may want to also have a coordinator to answer to business units and

executives; you don’t want them asking for updates and distracting the inci‐

dent manager. Other teams can be observers; game day should be a learning

opportunity for all.

During game day, document while the incident is ongoing, with timestamps,

observations, and actions taken. After game day, perform a postmortem to

answer questions like these:

• What did we do and how can we do better?

• Did the monitoring tools alert correctly in the first place, and were those

alerts routed by the pager system to the person or teams on call?

• Did the incident team have enough information from the monitoring,

logging, and metrics systems?

• Did the incident team make use of documentation like playbooks and

checklists?

• Did the members of the incident team collaborate well?

If needed, update the technical documentation and procedures, and dissemi‐

nate the lessons learned.

97 Things Every Cloud Engineer Should Know100

1 Excerpted from Learning Serverless by Jason Katzer (O’Reilly, 2020).

Improve Your Monitoring
with Visualizations and
Dashboards
Jason Katzer

Charts take your monitoring metrics to the next level by making it possible

to visualize them.1 Why work on this task? Because viewing the charts you

create will unlock a different kind of creativity when facing an impending

incident in your production systems.

It may take some time to get this right; creating effective charts that tell you

what you need to know about your application is more of an art than a sci‐

ence. For example, you can use login metrics to start to understand the cur‐

rent traffic flowing through a certain user path, while also being able to

contextualize that instantly with the insight of overlaying the history over

certain time periods.

Additionally, changing the aggregation you are using can tell you different

things. Think back to calculus class, if you took it: the current value of a met‐

ric can tell you something interesting, but the rate of change of that metric

can indicate a trend that tells you something different.

When you are having an argument about how often one thing happens ver‐

sus another, that is a perfect time to turn to metrics. You can add a line of

code to track something, ship it to production, and start to get answers

instead of guessing.

Functions allow you to permute the data being graphed in a limited set of

ways as made available by your cloud provider. Sometimes overlaying the

same metric on the same graph multiple times, but applying different func‐

tions to each line, can give you even more information instantly about a key

metric.

Collective Wisdom from the Experts 101

Consultant and Creator of CloudPro.app

Some of the basic functions you should expect to have are sum, avg, min,

and max. These functions are the building blocks to create more powerful

visualizations that give you the most insight into the operation of your serv‐

ices and systems. Make sure you are familiar with all of the offerings of the

tool you are using.

Documentation is a must for each graph you create. Explain what the human

operator is looking at and how to make sense of it. Reference or link to addi‐

tional information in your runbook or operations manual. And if there is a

specific reason you chose certain functions to display data that wouldn’t be

easily understood by someone unfamiliar with the system, add that reason‐

ing to your documentation.

Creating a dashboard of effective charts can bring what was once an invisible

system to life with full visibility into all of the vital signs of health for your

service or even the application as a whole.

Many dashboards have the ability to change the data displayed based on

changing the value of a tag. You can reuse dashboards between the different

stages of your services by utilizing this functionality.

Well-designed monitoring dashboards that are easy to understand and

reflect the health of the service should allow you and others to detect anoma‐

lies and incidents. Here is where you are actually able to understand the

health at a glance.

Generally, dashboards should allow you to adjust for the time period in

which you would like to inspect. Including important events such as deploys

can help a human operator determine whether an issue was directly caused

by a deployment and investigate further.

No one dashboard will solve everything for everyone. You might combine

multiple tools and sources into a dashboard. Either way, you’ll need a consis‐

tent set of rules and standards for all of your “official” service dashboards.

97 Things Every Cloud Engineer Should Know102

REvisiting the Rs of SRE
J. Paul Reed

One of the hottest topics in site reliability engineering right now is how to

make your applications and services resilient in the face of failure. And, as

most site reliability engineers know, one of the main arguments for moving

those services into the cloud is its much-touted robustness; but, of course, we

must think differently about how we architect our applications if we expect

them to “automagically” rebound when something goes amiss in the techno‐

logical sky.

Engineers frequently run into these R-words in discussions on how to

develop and operate in the cloud. Hearing them so often, you might have

started to wonder: don’t they all sorta…mean the same thing? Fear not: resil‐

ience engineering (RE) is here to help clarify all those Rs!

Resilience engineering has existed as a subdiscipline within the safety scien‐

ces for over two decades; practitioners recently started to apply its concepts

to our industry, looking at how human factors, ergonomics, and “safety”

relate to improving the functioning of the web-scale systems that developers

and operations engineers wrangle with daily. A major point of examination

is the contributions we messy humans make to our systems.

In resilience engineering, those R-words refer to specific (and different)

aspects of the socio-technical systems within which we exist and maneuver:

Robustness

RE defines robustness as “System X has property Y that is robust in

sense Z to perturbation W.” Put in less “mathy” terms: robustness is cre‐

ated when we design and implement fallbacks in microservices or use

languages with, say, memory safety guarantees (Java instead of C++).

Robustness protects our systems against a specific type of failure mode,

and offers that protection in a specifically designed way. (When folks say

their service is “resilient” to failure, RE would say it is “robust in the face

of this specific set of failures.”)

Collective Wisdom from the Experts 103

Senior Applied Resilience Engineer at Netflix

Reliability

This R-word refers to patterns that support consistent operations or ser‐

vice levels; examples include making an application multiregion in the

cloud or developing an application on two operating systems and fixing

a bug that technically exists on both OSs, even if the application actually

crashes on only one.

Rebound

In an RE sense, rebound refers to the ability of a system to deal with a

chaotic situation (an incident, say) using structures that have been

developed and deployed before it’s confronted with that chaos. During

an incident, a CI/CD pipeline that encodes all the deployment logic (so

nothing accidentally gets missed in the fray) is an example of rebound

capabilities.

Resilience

Last but certainly not least, RE defines resilience as a set of properties

and practices that increase a system’s ability to react to the world around

it. The important distinction here: resilience is something you “do,” not

something you “have.” “Resilience is a verb,” it’s often said. Specifically,

there are activities, both “socio-” and “technical,” that we as engineers

can leverage to foster resilience, including establishing and sustaining

common ground to increase inter-team predictability, setting the stage

to cultivate personal and team adaptive capacity to leverage in future

incidents, and facilitating company-wide organizational learning efforts.

Resilience engineering’s foray into software development and operations

offers a unique opportunity to bring rigor and hard-learned lessons from

other industries—aviation and air traffic control, healthcare, maritime oper‐

ations, construction, nuclear power, and more—to the increasingly critical,

society-impacting systems we are responsible for.

We (self-described) “software safety nerds” invite you to check out resilience

engineering as a way to improve not only the cloud-based applications

you’re responsible for, but your own experiences as you operate them.

And bonus: now you always know which R-word to pick when discussing

how to make that pager quieter during your team’s on-call shifts!

97 Things Every Cloud Engineer Should Know104

The Power of
Vulnerability
Ken Broeren

What does it mean to be vulnerable? We rarely use this word because, for

many of us, vulnerability equals weakness. A quick story…

It was a typical Thursday, and I returned to my desk from a meeting about a

project I had been working on for months. Our team had been making good

progress, but we still had a long way to go.

I scanned through my email—no major emergencies there—and got to work.

A few minutes later, my phone vibrated itself off the desk from the flurry of

text messages. Several “system down” errors and “Hey, what’s going on with

the network?” messages stared back at me.

“So much for getting any work done,” I muttered. One look at the bright red

network dashboard told me links were down everywhere. I started thinking

of scenarios that could have caused such a widespread issue.

I opened an emergency bridge line and got the key people on to start

troubleshooting.

“It could be our provider—is the telco having a major issue right now?”

someone asked.

“Good question,” I answered.

“Someone give their support a call and get a ticket opened right away,” our

director barked. Jeff volunteered to do that and dropped off the call.

“Did anyone make any changes?” the database engineer asked. “I can’t con‐

nect to any of my production database instances, but I can get to a few of my

development servers.”

“No changes that I am aware of,” and “The change control calendar has

nothing on it for this morning.”

Collective Wisdom from the Experts 105

Founder of Elevaros

We had a lot of back-and-forth discussion with no real progress. Finally, we

made a breakthrough. All network traffic stopped at one of our internal

firewalls.

One of the network engineers piped up, “Umm, this ruleset changed this

morning—looks like 10:17 local time.”

“Damn it, another unauthorized change,” I thought. I immediately suspected

one of my team members.

I was pretty sure John had made the change, so I wrote a message to him:

“We’re having a major outage. Made any changes to the firewall this

morning?”

He didn’t answer for what seemed like a long time, though in reality, it was

90 seconds. “Nope,” he said. “Not me.” “Who else could it be?” I muttered

under my breath.

The network engineer said, “I think it was Mike.” Mike was usually careful

about making changes. Without chastising him, I asked, “Mike, can you get

that change reversed right away?”

To my surprise, Mike piped up, “Yep, I’m doing that now.”

Wait a minute, I thought. Was Mike on the call the whole time? Why hadn’t

he said anything?

Well, the truth is he was afraid of being vulnerable. He feared taking the

blame for the outage and wanted to avoid taking the fall for the error. At

first, he tried to convince himself that his “innocent” change couldn’t have

been the culprit. But as more evidence pointed toward his action, he had no

choice but to confess.

But that’s not vulnerability. Hiding from your mistakes is the opposite of

being vulnerable.

What if we all approached outages with a “Hey, that might have been me!”

attitude? We all make mistakes, and we’re not competing with one another,

especially during an outage. Outages make us all look bad—not just the one

who made the error. Being open and transparent solves issues quicker and

prevents more outages!

Great teams don’t hide things from one another. They collaborate and shoul‐

der the load together.

Be courageous! Vulnerability isn’t a weakness. It is a strength that you can

bring to your team.

97 Things Every Cloud Engineer Should Know106

The Basics of Service-
Level Objectives
Kit Merker,
Brian Singer,
and Alex Nauda

“I want it to work perfectly,” your boss or maybe a product manager tells

you. But you, as a cloud engineer, know they aren’t really willing to pay for

that level of service, even if it were possible, which it’s not.

How can you give management an easy way to instantly understand the

trade-offs between reliability, speed of innovation, and cost? Service-level

objectives (SLOs) are the answer. SLOs create clear reliability guidelines that

balance the trade-offs between cloud costs, speed of change, and external

risks.

What Are SLOs?

SLOs are key performance indicators for cloud services based on customer

happiness. SLOs define the precise level of service that needs to be achieved

in order to avoid unacceptable risk of displeasing the customer.

Let’s use availability as an example. When we talk about how often our infra‐

structure is available (uptime), we typically speak in terms of nines. If your

infrastructure is available four nines, or 99.99%, it will be unavailable 52.6

minutes a year. However, if your infrastructure achieves five nines, then your

system is up and working 99.999% of the time—that is, it’s down only 5.26

minutes a year.

In an ideal world, we’d want our infrastructure to achieve as many nines as

possible; however, moving from one class of nines to the next-higher class is

roughly 10 times more expensive (you’ll incur significant people and infra‐

structure costs to make the leap to the next level). And when you consider

the inherent limitations of physics and the architecture of public networks,

approaching five nines of reliability consistently can become nearly impossi‐

ble. So, the key question is, how many nines are good enough to keep the

customer happy without wasting resources?

Collective Wisdom from the Experts 107

Nobl9

Another way of looking at SLOs is to consider their corresponding error

budget, a small acceptable allowance for errors. If our SLO is 99.99% uptime,

our error budget is the additive inverse: 1 – 99.99% = 0.01%, or 52.6 minutes

a year. In other words, we will tolerate errors within this allowance—this

small amount of downtime—because we expect that outages within this

range will not upset customers enough to warrant prevention.

SLOs: The Cloud Engineer’s Best Friend

SLOs help bring organizations together around reliability. You’re not just

chasing nines for nines’ sake, pretending to be perfect, or hoping dumb luck

is on your side.

Here are three ways SLOs can be a cloud engineer’s best friend:

SLOs help you collect data about how well you are serving your customers.

Achieve your SLOs, and customers remain happy; blow your error

budgets, and customers leave.

SLOs enable you to evaluate business trade-offs.

SLOs help you balance the competing interests of product stakeholders

who want to rapidly launch new features or products, and IT operators

who want to maximize infrastructure performance and reliability.

SLOs serve as a common language between business and multiple technical

stakeholders.

SLOs help everyone in the company work together as an aligned team to

delight users and grow the business—and do it without guessing.

97 Things Every Cloud Engineer Should Know108

Where Do You Start?

As in the preceding example, availability of cloud services is a great place to

start. You may also want SLOs to address quality, throughput, latency, and

more. In fact, you will eventually have not one but many SLOs, because a

variety of things to be measured play a key role in delivering customer

happiness.

To get started, choose the cloud service aspect that is most critical to your

business. Then, as your teams learn what SLOs are all about and what a great

tool they are for balancing reliability, cost, and innovation, broaden your

scope to include SLOs for other aspects of your cloud services, such as auto‐

mation, infrastructure, applications, and user journeys.

As you expand the reach of SLOs in your organization, remember: SLOs

must always be directly connected to customer happiness and business

impact.

Collective Wisdom from the Experts 109

Oh, No: No Logs
Laura Santamaria

Logging is the least glamorous part of any server, much less any cloud-based

system. However, it’s one of the most critical processes on a server for opera‐

tions teams, whether they’re responding to an incident or monitoring a sys‐

tem for anomalies. Great logs are even more crucial for anyone working with

a distributed, cloud-based system that has not been properly maintained—

the dreaded legacy system. However, what do you do when you don’t have

logs?

If you don’t have logs, don’t panic. There are many ways to debug a system

without logs. It just requires ingenuity and patience, along with creative

thinking. If you panic before you can get too far, you will narrow your men‐

tal pathways and take up precious thinking space worrying about your boss

breathing down your neck. Take a deep breath and sit down to think.

First, try hitting any available endpoints or services. Whether it’s an API call

through curl or a ping to a server, you will get something you can work

with, even if it’s no response at all. For example, a 403 response from an API

with known good credentials indicates an error with authentication, perhaps

from a compromised authentication system or someone updating a database

without following a procedure your company has established. No response

from a server or an API tells you to take a closer look at networking connec‐

tions if you’ve already checked the cloud provider’s user interface to ensure

that the servers hosting the system overall are actually up.

Next, drill down into any available systems you can access. Getting direct

SSH access to any boxes can be a huge boon, as you can check on the state of

any running processes and see which processes might have shut down. Your

system will be logging data on those boxes, and an SSH connection can allow

you to see those logs. On continuously updating operating systems like

CoreOS, it’s possible that updates to the operating system broke an applica‐

tion, especially if legacy distributed systems are running. Directly accessing

boxes will quickly bring those problems to light. You’ll have access to the

system logs, which can help correlate timing on any system changes to the

97 Things Every Cloud Engineer Should Know110

Developer Advocate at LogDNA

start of any incidents. Don’t discount the problems a system update under‐

neath your container-based systems or distributed systems can cause.

If you don’t have SSH access or if it’s a shared server—such as with a server‐

less system—you may need to take a closer look through a codebase or try

accessing secondary backend systems like your databases to see if you can

gather any data on the state of the system from there. Get creative. Think

through the architecture underlying the system, and look for points of over‐

lap or access where you might gather data.

Finally, try building or accessing a similar environment. If your teams were

following standard software development life cycles, they probably needed

testing and staging environments. If you already have those built, you can try

simulating the same attempts at hitting endpoints to understand what a cor‐

rect response should be. You can try shutting off different pieces of an API,

for example, or upgrading an underlying operating system to see if a break‐

ing change to container networking may have caused a container or applica‐

tion failure. If you don’t have such a system, a skeleton system stood up for

temporary troubleshooting can be just as valuable for quick diagnosis of a

broken production system.

Hopefully, these basic ideas on how to gather data from your servers or serv‐

ices will give you just enough information to understand what went wrong

and point you in the right direction to finish debugging your systems and get

production back up and running. If none of this worked, have you tried

turning it off and turning it back on again (after backing it up)?

Collective Wisdom from the Experts 111

Use Checklists to
Manage Risk
Lisa Huynh

Whenever there’s change, there’s risk. And when we’re working in the cloud,

we multiply that complexity as we add reliance on external resources that are

changing underneath us. One tool that should be in your arsenal is a basic

checklist, which will make running tasks simpler and more repeatable for

you and the rest of your team.

The human mind can remember only a handful of items at a time. And

when we do something like an infrastructure move, we have a million mov‐

ing pieces to keep track of. Tasks run the gamut from getting teams’ sign-off

to ensuring that a flag for some minute but very important resource gets

flipped.

And if something goes wrong, it’s much less stressful if we already have a

playbook prepared to handle failure scenarios instead of trying to figure out

what to do on the fly. Skip the time spent on things like debating whether to

roll back or hotfix by making the choice beforehand.

Enumerating the steps for debugging or maintaining the system is helpful in

general. The checklist doubles as a form of living documentation for the

expected behavior of the system, putting in writing what can often be tribal

knowledge. Some of the annoying issues are those that get silently fixed, but

then when the expert is away, you’re stuck combing through logs or debug‐

ging from scratch to figure out what to do.

Imagine that an alert has come in that users are receiving a high number of

HTTP server errors. The alert may link to a debugging checklist that looks

something like this:

1. Check whether recent changes were made to the application and notify

change owners.

97 Things Every Cloud Engineer Should Know112

Lead Software Engineer at Storyblocks

2. Check load balancer metrics at <location> to verify that all servers are

passing liveness checks and receiving traffic.

3. Check request metrics at <location> for changes in size or shape of

traffic.

4. If errors do not appear to have been triggered by application changes,

scale up the number of instances.

If errors are alleviated, investigate autoscaling triggers.

If errors do not occur on new instances, but continue to occur on old

instances, cycle out the old instances.

5. Follow application debugging steps at <location>.

As you create these lists, keep a few things in mind:

Presentation matters.

The longer a checklist is, the more likely it is that steps will be missed. If

a list becomes long, we can break it into sublists. Sequential tasks should

be listed in the order they are performed. For nonsequential tasks, criti‐

cal items should be first, so they’re less likely to be missed. Similar tasks

should be grouped together in order to avoid context switching. In this

case, we’ve broken out the application debugging list, and the steps have

been ordered to eliminate the most areas at a time.

Be explicit.

If you are writing a list to help your team respond to an issue, the steps

are no good if only one person understands them. Avoid using jargon or

abbreviations. Link to relevant resources as much as possible. Ideally,

someone should be able to jump in and run through the actions with

minimal hand-holding.

Automate as much as possible.

When a task becomes routine, we can codify the work it is doing and

automate the process. For example, if one of the steps is to cycle the

machines, that’s something we can probably instrument a tool to run.

No matter your team’s size or budget, checklists are a valuable tool to hold in

your pocket. Combat increasingly complicated systems by planning and doc‐

umenting your process for change. Your team, and the future you, will thank

you.

Collective Wisdom from the Experts 113

Everything Is a DNS
Problem: How to
(Im)prove
Michael Friedrich

“Everything is a DNS problem.” This likely sounds familiar, and you’ve

probably heard it from your team members during an incident. Customers

say that your shop website is not working. You have verified it in your

browser, and it seems fine.

DNS relies on a distributed environment, which makes it highly available

and sometimes hard to debug. The problem is not necessarily bound to

resolving a domain name. Instead, you need to get the whole picture with

network routing and analyze the packet path with a client’s point of view.

If the website is not reachable, is it a DNS problem? It could also be related

to a specific location, where the client is trying to fetch the content behind a

firewall or proxy. This needs more investigative work. Being the detective

when your customers call can be a challenge.

Before you start analyzing the problem, stop for a moment and breathe. You

cannot know everything. The documentation and Google are both your best

friends. Forget what others say about “read the f***ing manual” (RTFM); the

documentation should always be your first entry point. Maybe a friendly

developer added a troubleshooting section, or you’ll find a link to a page that

explains the problem you’re facing.

Accelerate your “Google-fu” by searching for the full error message and

using multiple keywords for context-specific filtering. Find a partner on your

team, and ask for help and guidance. Provide them with the complete con‐

text of your research. Take notes on the issue while the incident progresses.

Whenever possible, share your screen in a call and do a pair debug session.

Analyze the network routes together and learn more about DNS tracing.

97 Things Every Cloud Engineer Should Know114

Developer Evangelist at GitLab

Adopt a strategy to isolate the problem and cut it into pieces, narrowing the

possible influencers. After a while you’ll do this naturally, making you feel

more confident when approaching a problem.

Do not depend on “fancy” tools; get comfortable in the shell with find, grep,

sed, and awk. Practice searching the logs from the command line and learn

vi(m), as it might be your only option for editing a file on a server or in the

shell.

If you need to fix something in production, document the change and raise

the issue with your team members. Adjust monitoring downtimes and alert

thresholds during this time to avoid on-call chaos.

Keep practicing with different Linux distributions in VMs, containers, or

CI/CD jobs. There might be a strategic decision requiring you to quickly

adopt a new Linux distribution, or change your infrastructure-as-code

patterns.

Make distributed monitoring and observability a priority whenever some‐

thing gets deployed. Discover only metrics, traces, and states you need. Do

not collect everything just because it is there. Document these strategies to

educate your team.

Let’s say the error in the shop website case turns out to be a load balancer

where Kubernetes pods were not answering DNS queries, but only for a spe‐

cific Internet Protocol (IP) source origin. Does it happen again after you

adopt deployment and monitoring strategies?

Because DNS is distributed in your cloud native environment, you’ll need

good strategies to understand and resolve problems. Take incidents and fail‐

ures as opportunities to learn. Develop strategies to battle-test your environ‐

ment with chaos testing. Document everything in your handbook and create

a postmortem analysis.

Collective Wisdom from the Experts 115

What’s the Time?
Nikhil Nanivadekar

Time is “the indefinite continued progress of existence and events that occur

in an apparently irreversible succession from the past, through the present,

into the future,” according to Wikipedia. From a computing perspective,

time can be a duration, or a date-time representation. Why is time an inter‐

esting problem in the field of computing?

Consider a day: each day has 24 hours, each hour has 60 minutes, each

minute has 60 seconds, and each second has 1,000 milliseconds. Hence,

questions like “How long did a process take?” or “How much time does it

take to complete a task?” deal with duration. Duration can be computed by

using this formula:

Duration = End Time – Start Time

Now let’s look at time as a date-time representation. The representation con‐

sists of year, month, day, hour, minute, second. Using an ISO 8601 standard,

time can be represented as a value like 2020-06-10T00:51:23Z, where Z

denotes the time zone—in this case, Coordinated Universal Time (UTC).

Reconsider the preceding formula for duration; the seemingly straightfor‐

ward formula becomes a little more complicated because of the time zones

involved. For example, say a process is started by a user in India at 08:00

local time and completed by another user in New York at 08:00 local time.

The preceding formula would indicate the process took 0 minutes. But that

is not true; the duration of the task was either 9 hours 30 minutes or 10

hours 30 minutes, depending on the time of year the task was performed.

That brings us to the next twist in the tale of time, called daylight savings

time or summer time. So, the correct formula for duration is as follows:

Duration = (End Time)@TimezoneT – (Start Time)@TimezoneT

97 Things Every Cloud Engineer Should Know116

Director at BNY Mellon

This fluid nature of time creates multiple challenges, especially when work‐

ing with processes in the cloud. Imagine a process running in a datacenter in

New York interacting with another process running in a datacenter in Lon‐

don. If both of these processes do the computation in their own time zone

and share time-related information with each other, it can be a source of

errors and bugs. Moreover, if the process in New York gets replaced by

another process running in a datacenter in California, the time zone for the

process also changes. The datacenter changes can lead to more possible

problems when working with time. To circumvent these issues, it is a best

practice to first convert all date-time information to UTC and then perform

the computations. Another best practice is to share date-time information in

UTC. Lastly, all date-time information should be accompanied by the time

zone to reduce ambiguity.

Time can be extremely mysterious and can lead to many unexpected and

unforeseen issues. The best way to work with time is to always consider time

zones, and retain and share the time zone information during interactions.

Time can be abstract and complicated, but it can be straightforward and sim‐

ple too, so always remember to check the time with the time zone.

Collective Wisdom from the Experts 117

1 A version of this article was originally published at Towards Data Science.

Monitor Your Model
Dependencies!
Ori Cohen

Algorithms rely on various packages, and each one of these packages will

have multiple versions throughout its lifetime.1 The following are several sit‐

uations, out of many, where dependencies may break your model or deploy‐

ment—and when that happens, you’ll wish you had some sort of mechanism

to monitor your dependencies, in addition to alerts that notify you when and

where a problem has happened.

At times you will have requirements.txt discrepancies between environments.

For example, your research environment is always up-to-date when it comes

to scientific packages, such as pandas and scikit-learn, but your deployment

has a lock on a specific version. Once new code or a serialized model is

uploaded to staging or production, packages such as pickle or joblib will

break when deserializing a model that was serialized using older package

versions.

You may be using DeepMoji, a package that converts emojis to text in a pre‐

processing stage; for example, converting a to happy. Your NLP model

relies on a certain mapping of emojis to text and was measured against a spe‐

cific DeepMoji version. Once you update to a newer version, the mapping

will change and directly affect your model, which in turn may lead to unex‐

pected classifications, or simply influencing prediction probabilities.

Someone outside your team might tweak a package under their responsibil‐

ity; this may happen up- or downstream, and it ultimately changes or breaks

the expected functionality of your model. If it breaks, the solution is a matter

of figuring out where the exception came from—and we all know that doing

so is time-consuming, especially when the exception is external to your

97 Things Every Cloud Engineer Should Know118

Lead Data Scientist at New Relic

codebase. On the other hand, if it keeps on ticking, you won’t be aware of the

problem until a client complains.

To take another example, let’s say a new deployment flow was recently intro‐

duced to your pipeline and for some reason, it breaks. The system automati‐

cally falls back on a previous flow that was deprecated months ago, but it’s

still pointing to old code, old dependencies, and old serialized models. Your

clients will be served with predictions based on stale data, and information

from new clients will be nonexistent in these old models. In other words, you

will have a small catastrophe on your hands.

To maintain deterministic behavior, one solution is to record dependency

versions in every environment and create alerts when a dependency mis‐

match occurs between environments. Another is to map dependency ver‐

sions to your predictions, so you can figure out what went wrong, when it

went wrong, and where it went wrong, and deal with it quickly and easily.

Unless you closely monitor your model’s performance and dependencies

and talk to your clients, you might miss these types of problems until some‐

thing completely breaks, even if your unit tests pass with flying colors and

your algorithm is technically functional.

In all of these cases, monitoring your dependencies in each environment will

save you expensive work-hours by shortening time to detection as well as

time to response and resolution. Most important, this approach will shorten

the time during which your clients are negatively influenced by these

incidents.

Collective Wisdom from the Experts 119

There’s No Such Thing as
a Development
Environment
Peter McCool

…it’s a candidate production system.

First up, a candidate production system isn’t the same as a real live produc‐

tion system—not even close. It has, however, reached the stage where you

can do yourself, and your customers, a big favor by starting to think about

what life will look like when it becomes one. Systems can get to this stage

awfully quickly, which can easily catch you by surprise.

There’s a tendency, certainly on my part, to look at a development environ‐

ment as nothing more than a piece of scaffolding: it’s there to help me write

some code; then it gets torn down, and everyone moves on. This is a com‐

mon assumption, completely understandable and replete with really unap‐

pealing implications. I contend we are all much better off looking at these

environments as candidate production environments.

For one thing, systems have a habit of escaping. You may write a system

thinking you’ll use it to do this one thing once. Then once turns into twice,

and a year later, you’ve been using it to bill your real live customers for, like,

a whole year—and it just sort of happened, both the system and the fact that

it got so intimately involved with asking actual people to pay actual money.

At least, that’s what my uncle’s dog’s best friend’s piano teacher tells me.

Yeah. They also tell me they’d rather have thought about how it’d work as a

production system, like, at all before it just sort of became one.

Another point is that production system really means “system that someone

else, anyone else, can hold you accountable for,” and this is a Rubicon that

systems cross surprisingly early in their lives. OK, it may not matter to many

people; their expectations may be low, and they may be understanding of

lapses. But the point remains: this now matters to them. Build infrastructure

is a good example of this sort of thing; it can matter to an awful lot of people

97 Things Every Cloud Engineer Should Know120

DevOps Manager at CT4

long before whatever is being built even looks like going live. Try telling a

development team they can’t deploy any code for a week and see how that

goes over if you don’t believe me.

There’s more to it than that, though. If you’re making your development sys‐

tems as production-like as practicable (and you are, right? Right?), signifi‐

cant opportunities are available to build, test, and refine the production

procedures as early as possible. Going live with something usually involves a

week to a month of misery. You can choose to either spread it out over the

preceding six months, whereupon it becomes less misery and more mild

annoyance, or you can go with actual authentic misery when you go live and,

worse still, straight after you go live. I’ve tried both; I much prefer any

amount of mild annoyance to misery.

The obvious thing here is build and deployment automation. If you commit

to a uniform process across all environments, you can get started on that

stuff really early. That’s not the end of the story, though. Logging and moni‐

toring more generally also benefit from as much road testing as possible.

These are all things that benefit from being built in, so that’s another com‐

pelling advantage to thinking about them on day zero.

Potential cultural benefits exist too. When you start thinking about a system

as a live operational system, you’re probably tempted to talk to whoever it is

who deals with that stuff, be it the SREs or the support team or whoever.

Succumb to this temptation; that’s my advice. Actually, my advice is twofold:

arrange it so you’re tempted as early as possible, and be sure to succumb

right away.

This can all be summed up as early engagement. Engage early with the issues

(the ones I mention don’t constitute an exhaustive list, either), and with the

people who might care about the system, either because they support it or

because they use it.

Collective Wisdom from the Experts 121

1 A version of this article was originally published attention LFI.

Incident Analysis and
Chaos Engineering:
Complementary Practices
Ryan Frantz

Learning from failure is extremely useful in a world driven by demands for

high reliability.1 Our approach to learning, and which failures we should

focus on, may not be clear. Two common avenues to learning are incident

analysis and chaos engineering.

Incident Analysis

Well-done incident analysis takes time. Constraining ourselves to a few

hours or filling out a template to complete an investigation does not result in

high-quality analysis. I’ve observed three outcomes associated with incident

analyses: pushing paper, technical teaching, and surfacing surprises.

Pushing Paper

Regulatory requirements or fiduciary responsibility may require your orga‐

nization to produce reports. In these cases, the value of analysis is largely

superficial: it’s part of a process to generate a paper trail. It’s a bureaucratic,

defensive procedure. Incident analyses are written to be filed, not read.

Technical Teaching

Imagine you operate an ecommerce site whose API fell over as requests

stacked up. Your analysis of this incident is an opportunity to update docu‐

mentation and procedures that can address technical gaps in people’s under‐

standing of the architecture. This is a way of building systems to be robust in

the face of past known conditions.

97 Things Every Cloud Engineer Should Know122

Software and Operations Engineer

The value of analysis seems tangible and immediate if we view failure as a

chance to fill in some blanks in our processes, retrain ourselves, and possibly

refine our practices.

Surfacing Surprise

A common theme across incidents is that something, somewhere, was sur‐

prising. Surprise is born from the events of an incident contrasting with our

mental model of how the system operates. Focusing on surprise makes

explicit the difference in mental models across a team of responders.

Beyond the specific details of an incident, other interesting surprises may be

uncovered, including tension between business goals and procedure (i.e.,

work-as-imagined and work-as-done). Such deep insights about the nature

of the work can allow organizations to make positive improvements, such as

enhancing procedures to take advantage of efficient workarounds that have

arisen to support underspecified tasks.

Chaos Engineering

Software is designed to express specific characteristics and behave in

expected ways. Eventually, things will change enough that our initial designs

may no longer serve us. Chaos engineering experiments help us evaluate our

systems under realistic conditions so we can identify where entropy is slip‐

ping in and where our initial expectations are holding up.

Chaos engineering experiments have a similar value as incident analyses that

provide technical teachings: the results are tangible and immediate. Chaos

experiments are narrowly scoped, and the deliverable is clear.

Incident Analysis or Chaos Engineering

So should we spend time analyzing incidents or performing chaos experi‐

ments? Practicing one can inform the other. Incident analysis and chaos

engineering are complementary, and when paired, may produce powerful

results.

Recouping our Investments

The folks at Adaptive Capacity Labs have this to say about incidents:

Incidents are unplanned investments…. Your challenge is to maximize the

ROI.

Collective Wisdom from the Experts 123

Incidents inherently have value. Failures direct our attention to areas that

warrant further inspection, including, possibly, via chaos experiments. Look‐

ing across a history of incidents, patterns may emerge that inform our

designs. Through incident analysis, we can develop well-targeted chaos

experiments that help us maximize the returns on our incidents-as-

investments.

A Vision for the Future

In 1995, Boeing set out to test the wing deflection of its 777 airplane. The test

subjected the wings to stresses well beyond what they were expected to

encounter in operation—it was designed to find the wings’ literal breaking

point. The goal of purposely destroying a multimillion-dollar vehicle was

driven by the aviation industry’s history of analyzing and learning from

incidents.

I have a vision for the future of software engineering: every organization will

know the value of incident analysis, and that knowledge will be expressed in

day-to-day work as it was for Boeing during this test 25 years ago.

Our job now, as software engineers, managers, or investigators, is to develop

the skills necessary to analyze our incidents and draw out the deep insights

they expose.

97 Things Every Cloud Engineer Should Know124

How Should I Organize
My AWS Accounts?
Stephen Kuenzli

The most fundamental tools for organizing and protecting cloud resources

are accounts: AWS accounts, GCP projects, and Azure subscriptions. Cloud

accounts are architectural elements that create management, fault, and secu‐

rity boundaries. But many organizations do not use them properly, which

puts the organization and its customers at risk.

The rule is: create a cloud account for each major use case your organization

operates in the cloud.

I’ll show how to organize a large organization’s cloud accounts to deliver

changes and operate safely. Tailor this to fit your needs. Let’s start with use

cases shared across the organization, and then examine those for running

end-user applications.

Every enterprise must support several use cases in their cloud deployment

(the green in blue/green deployment). Provision the following accounts:

• The Security account contains the organization’s Cloud API activity logs

(CloudTrail) and resource configuration inventory (Config). Ingest

these logs into log search tools in the Shared Services account.

• Operate monitoring, logging, DNS, directory, and security tools in a

Shared Services account. Collect telemetry from the cloud provider, your

infrastructure, and your applications running in other accounts. People

with high privileges in other accounts may use this data and these serv‐

ices, but should not be able to modify operational telemetry.

• The Delivery account operates the powerful CI/CD systems that build

applications and manage infrastructure. Operating CI/CD in a dedicated

account simplifies securing that function.

Collective Wisdom from the Experts 125

Founder of k9 Security

• Create Runtime accounts for each business unit to develop, test, and

operate its applications (the blue in blue/green deployment). Optionally,

create accounts for the sandbox and disaster recovery.

Let’s see how this structure influences autonomy, security, and cost.

Most organizations have multiple business units. Provisioning Runtime

accounts for each business unit decouples decision making and access man‐

agement between business units. This provides the freedom necessary for

business units to get their jobs done with minimal coordination. Recognize

that these choices will guide relationships between people and services

within the enterprise going forward.

97 Things Every Cloud Engineer Should Know126

Architecture, team structure, deployment, and operational practices that do

the work to deliver applications vary across business units. Recognizing and

accepting differences helps business units coexist and adopt the cloud in har‐

mony instead of battling over standards.

IAM users, roles, and policies are scoped to an account. Consequently, an

engineer or application in one business unit can use resources without

affecting another business unit. This limits risk of security compromises too.

An attacker with a foothold in one business unit cannot automatically access

another. Cross-account access can be enabled but this must be done

explicitly.

Tracking and managing AWS operational costs at the business unit level will

be very easy in both AWS and third-party cloud cost management tooling.

Most organizations have multiple phases of application delivery. Condense

environments by purpose and deploy each environment into a separate

account: dev, stage, and prod.

Application development teams can deploy changes and get feedback rapidly

without fear of breaking downstream environments, particularly production.

Varying a person’s permissions by delivery phase is straightforward when

each phase has its own account. An IAM user or role in the dev account

won’t automatically get the same permissions in stage or prod. This simpli‐

fies giving the right level of access to data and operations at each phase of

delivery. Deleting databases may be OK in dev, but almost never is in prod.

Partitioning accounts by delivery phase also demarcates audit boundaries

and keeps non-prod out of scope. Partitioning by phase helps you under‐

stand how money is spent on each environment and set resource usage limits

appropriately.

Organize cloud accounts to support the distinct use cases, structure, and

delivery processes of your organization. Partition use cases by account to

create safe boundaries for activities and data that enable your organization to

move quickly and safely.

Collective Wisdom from the Experts 127

Resiliency and Scalability
Are Key
Tidjani Belmansour

The rise of the cloud promises a virtually unlimited pool of resources. This

opens up a whole range of new opportunities for everyone: the hobbyist, the

freelancer, the startup, all the way to the biggest companies in the world.

Suddenly, the infrastructure running our applications can scale from one

instance to thousands in a matter of minutes, if not seconds, in order to meet

users’ demand. Scaling should be designed both ways: out (when there’s an

increase in demand) and in (when demand decreases). This approach is also

known as horizontal scaling.

Scaling out and scaling in refer to increasing and decreasing the number of

instances in order to meet the demand in processing power so that users’

requests are not only fulfilled (i.e., not rejected because of the servers falling

under pressure), but fulfilled within a reasonable amount of time (we refer to

this as reducing the latency of our applications).

Another approach to scaling is known as vertical scaling. With this approach,

we increase (scale up) or decrease (scale down) the computing power of our

instances (more CPU, more RAM, etc.) rather than their count.

Ideally, we should aim for horizontal rather than vertical scaling, for at least

these two reasons:

• Vertical scaling doesn’t increase the number of instances: thus, if we

have only one instance of our service and that instance goes down, it

may cause the failure of the whole system (if it’s not resilient).

• Vertical scaling doesn’t always guarantee that more requests will be han‐

dled: physical hardware limits increasing the capabilities of our servers.

97 Things Every Cloud Engineer Should Know128

Cloud Solutions Architect at Cofomo

Why is reducing this latency so important? Because it has been demon‐

strated that the longer your users wait for a response from the server, the

more likely they are to simply abandon using your services and move on to

using your competitors’ services.

Resiliency and scalability are somehow related. But what does resiliency

mean? Resiliency can be defined as the ability of a system to recover from dif‐

ficulties. How is resiliency related to scalability? A system that is running

under pressure could reject an incoming request even if it has already trig‐

gered an autoscaling request (which may take some time to be completed). If

our system is not resilient, it will crash, and the user may lose their session,

which is certainly frustrating. If the system is an ecommerce site, we are

likely to have lost a sale! However, if that same system was resilient, the

failed request would have been captured, and the system would have tried

again a given number of times and ultimately succeeded in processing the

request.

Back to the promise we’ve talked about. There’s no magic; it can’t be turned

into an opportunity unless your applications can handle the scalability and

resiliency of the cloud platform. This can be achieved only by designing

applications with resiliency and scalability in mind.You can do that by using

cloud patterns and tools/frameworks that support these concepts. Such tools

and frameworks exist for almost every technology and programming

language.

Infusing scalability and resiliency into on-premises applications has often

been neglected for various reasons, the most common being that the maxi‐

mum load of the system is known ahead of time and the system is designed

according to it. However, the cloud has changed this, for the worse or the

better: our systems may experience much more success than we’ve anticipa‐

ted. If we designed our system so that it can handle such success, we may win

big. Otherwise, our business will be negatively impacted.

So, next time you design a new application or rearchitect an existing one,

consider using cloud patterns, and infuse resiliency and scalability at the

core of the application. This will greatly benefit your applications, whether

you run them on premises or in the cloud.

Collective Wisdom from the Experts 129

Monitor, You Will
Tidjani Belmansour

So, you have built a shiny new application that you plan to deploy to the

cloud. You have applied all the best design patterns and practices to create a

resilient and scalable architecture. You have tested your application using

various methods and approaches in order to ensure that it meets users’

demands and that it is bug-free—or, at least, free of “severity 1” types of bugs

(you may have kept track of less-critical bugs in a “technical debt” registry of

some sort). You probably also have scripted your infrastructure and created

the required CI/CD pipelines. You’ve just deployed your application into the

production environment, and you’re ready to celebrate your success.

Well, not so fast. Haven’t you forgotten something? What about monitoring?

What Is Monitoring and Why Should We Care?

No matter where you look up the word monitoring, you’ll end up with a defi‐

nition that is close to this one:

Monitoring is the systematic and periodic process of collecting, analyzing,

and using information to track the usage, quality, or progress of an asset

toward reaching its objectives.

Monitoring requires data. It is the data that is gathered. It can be in multiple

forms and come from various sources (activity logs, server logs, application

logs, and so on). This is usually referred to as telemetry data.

This data includes, but is not limited to, information that answers questions

such as: What action was performed? By whom? When? And what resources

were affected by that action?

Is Monitoring Required Only for Cloud-Based
Applications?

You’ve guessed it: the answer is no. Monitoring is important whether your

application is deployed on premises or in the cloud, although organizations

97 Things Every Cloud Engineer Should Know130

Cloud Solutions Architect at Cofomo

may give special care to monitoring cloud-based applications as they are

running outside their datacenters.

That being said, cloud providers offer you a wide range of tools, such as

application performance management (APM) tools, that make putting

together a monitoring solution and alerting mechanisms easier than doing it

all by yourself.

What Should We Monitor?

Monitoring is a driving factor that will ensure that your application is suc‐

cessful in the long run. You’ll rely on monitoring as an indicator to figure

out whether your application is still meeting users’ demands in terms of the

following:

Functionality

Are there features that are no longer used or that are confusing users?

User experience

Is your application responding fast enough? Are users experiencing

issues?

Usage patterns

How are your customers using your application?

Security

Is the application under attack? Was the application hacked? Was there

any data exfiltration?

Billing

Is your application costing you more than expected? Can you reduce

your service plan?

Platform’s health status

Are there any service failures on the cloud platform?

And almost any other kinds of insights you may think of.

Monitoring and Dashboarding

Your cloud provider of choice is likely to provide you with a way to build

dashboards in its console. This is a great way to set up a visualization of

what’s going on with your software system (application and infrastructure)

by pinning metrics and telemetry data.

Collective Wisdom from the Experts 131

We Should Design Our Applications for
Monitoring from the Start

To be effective, monitoring can’t be considered just at the end of the applica‐

tion’s design process. It has to be considered from the beginning of the

design journey. You have to think about what telemetry data you want to

monitor, at which stage and in what form? Where will you send that teleme‐

try data? Will you need to query the telemetry data in real time? Do you need

to be alerted if something unusual or potentially dangerous is detected? At

what frequency? These are just some of the questions you’ll need to answer.

By now, you probably have a better view into what monitoring can bring to

you and your applications. So, the next time you work on a cloud-based

application (or an on-premises one, for that matter), make sure you infuse

monitoring into it.

97 Things Every Cloud Engineer Should Know132

Reliable Systems Don’t
Happen by Accident
Zach Thomas

While we’re designing intricate systems, beginning with the happy path can

be a helpful simplification—but it’s a big mistake to design only for the

happy path. While it’s true for any computer program, our problems multi‐

ply when we interconnect things in the cloud.

Here’s a partial list of things that go wrong all the time:

• Something you want to reach over the network is unreachable.

• Something you want to reach over the network is unusually slow.

• Demand for your service suddenly overwhelms its capacity.

• Users create data payloads orders of magnitude larger than you

expected.

• Your API requests are being throttled by your platform.

Among other implications, the cloud era means that operational concerns

have become development concerns. Guarding against the unhappy path

will make the difference between a reliable system and a smoking wreck.

Any part of your system that is without limits is a part that can bring down

your system. This applies to everything from inputs you accept to the

amount of time you wait for a response from a downstream system. Enforce

cardinalities. Do you expect your customers to create thousands of entries in

your content management system? Then don’t make it possible for them to

create billions. Another place to enforce limits is at the front door to your

service; even with automated horizontal scaling, you must place limits on the

number of requests you will accept. When your service is running at peak

capacity, it is far better to reject new work than to accept it and fall over.

Collective Wisdom from the Experts 133

Team Lead for Service Reliability at Genesys

The Architecture Diagram Is Also a Map of Failure
Modes

When you look at an architecture diagram with your reliability engineering

hat on, you’ll begin to see that every box is a subsystem that can fail, and

every line is a communication path that can flake out on you. Enumerating

these failure modes in your design documentation is a good idea. For every

dependency, ask the following questions:

• Do you have a good, brisk time-out?

• What is the retry policy?

• Is there a circuit breaker?

• Is there a reasonable fallback value we can use in case of failure?

• Can we defer the work and try again later?

Asynchronous Communication Is a Friend of
Cloud Reliability

Since everything you want to communicate with on a network can fail, syn‐

chronous requests are the most brittle of all. Whenever you can tolerate a lit‐

tle more latency, put requests into a queue, so that the consumer of that

queue can do the work when it’s ready. In case of trouble, the consumer can

handle the highest-priority messages first. In case of an outage, the requests

can be deferred until the system is healthy again.

Exercise Adverse Conditions

You can make educated guesses about how your service will perform under

duress, but it’s far better to put it through its paces in a series of controlled

experiments. For any alerts that are configured to page your team, try to cre‐

ate the conditions that will trigger the alert. Practice your disaster recovery

plans in a controlled environment before you need them in production.

97 Things Every Cloud Engineer Should Know134

What Is Toil, and Why
Are SREs Obsessed
with It?
Zachary Nickens

Site reliability engineers love to hate toil, but what is toil? Why are SREs

obsessed with removing toil? Site reliability engineering is what happens

when you treat operations like a software problem. How do you treat ops like

a software problem?

SRE can feel opaque, but in practice, it is the essence of engineering: remove

inefficiencies in one component so that other components may perform

quantifiably better. Software engineers want their code to be simple, fast, and

reliable: bug and cruft free. SREs want operations to be bug and cruft free!

Cruft and bugs in ops and infrastructure can be described in one word: toil.

Toil is the kind of work tied to running a production service that tends to be

manual, repetitive, automatable, tactical, and devoid of enduring value, and

that scales linearly as a service grows. Toil is any engineering effort devoid of

meaningful value.

If a piece of software is going to be used, we should make commitments, at a

minimum to ourselves, that it is reliable, secure, and observable—but there is

no such thing as 100% reliable or 100% secure. When an issue occurs, soft‐

ware engineers need to be able to identify the issue, remediate or recover,

and restore service. Slowing down to find all potential problems before

release isn’t the answer. If we slow releases, we sacrifice velocity, and the fea‐

tures we spent engineering effort on don’t get released. Increased velocity is

what we want. We want to ship new features quickly and release often. The

answer lies in automation—in removing all the toil from the process of get‐

ting software deployed. We need automated testing in CI/CD pipelines,

automated infrastructure provisioning and control via infrastructure as code,

and automated monitoring and alerting for when bad things happen. We

Collective Wisdom from the Experts 135

Site Reliability Engineer at Woolpert

need to remove as much manual, repetitive, low-return work as possible, so

we can spend our effort engineering new features and new software.

Toil isn’t only a problem when working on and shipping features. When

things go wrong, toil gets in the way of remediation and recovery. Debug‐

ging a broken deployment script or manually managing environment drift

takes us away from positive work and forces us to focus on negatives. If we

automate as many negatives as possible out of our equation, we get to spend

more of our time on the positives. Removing toil from the entire software life

cycle makes the entire life cycle quantifiably more efficient and effective,

more reliable and secure. Removing toil makes the development experience

more enjoyable. It makes deployments more enjoyable. Removing toil makes

error remediation and incident response faster. Removing toil from the life

cycle makes engineers happier, and happy engineers create better software!

97 Things Every Cloud Engineer Should Know136

PART VI

Software
Development

The Cloud Doesn’t Care if
It Works on Your Machine
Alessandro Diaferia

If your code successfully compiled and all the tests passed on your machine,

you’re only a tiny bit closer to success. The increasing complexity of the pro‐

duction environments in the cloud is rendering our development machines

an ever less accurate representation of the context our code is going to run

in. For this reason, testing a local machine is not enough to build confidence

in the code you write. We, as engineers, need to widen our mindset and go

outside the comfort zone of our IDEs or our development machines by

deploying the software we build. This is the only way we can understand the

implications of running our code in a complex environment like the cloud.

As the markets become more competitive and the frequency of change of

customer needs increases, companies need to stay agile at delivering value to

their client base. Deploying software can’t be an afterthought. It can’t be a

painful and error-prone activity that gets left as a last necessary evil, maybe

delegated to an entirely different team. Running the software in a

production-like environment should be incorporated into every develop‐

ment cycle. This is the only way issues can be surfaced and tackled before it’s

too late. People writing code should also deploy it, understand what the

implications are when running it in the cloud, and understand the mainte‐

nance effort that their code requires. Every engineer working with systems in

the cloud should become comfortable using tools for container orchestra‐

tion, infrastructure as code, and deployment to test their work in environ‐

ments that resemble production as much as possible. Deploying should be an

inherent part of the daily work of building software for a software engineer

working in the cloud.

In addition to continuously deploying, companies working at scale in the

cloud will find that being able to test in production is a competitive advan‐

tage. The complexity of the traffic patterns going through high-scale produc‐

tion systems is increasingly harder to reproduce in a controlled testing

97 Things Every Cloud Engineer Should Know138

Senior Software Engineer at Utmost

environment. Building and maintaining complex controlled test environ‐

ments is not a fruitful investment. For this reason, organizations should

rather invest in tools that help engineers to experiment in production and

validate the underlying assumptions their code builds upon against real

usage scenarios. Altering software behavior should be as easy as flicking a

switch on the dashboard.

Luckily, we’ve never had so many tools available to help with all of this.

Automation software delivery pipelines, container orchestration and security

scanning, infrastructure as code, monitoring, alerting—all of this is available

almost for free to anybody. Software engineers working in the cloud should

flex their production operation muscles and embrace these tools as part of

their daily work. There are no excuses for not doing this in an era in which

the pace of delivery and speed of adaptability are key factors in the success or

failure of a company.

It works on my machine! has never been as irrelevant a claim as it is

nowadays.

Collective Wisdom from the Experts 139

KISS It
Chris Proto

Most of us have probably heard the famous acronym KISS, or keep it simple,

stupid. Whether you the realize it or not, you apply this fantastic guiding

principle in your life.

When you go to the grocery store, do you exclusively buy exotic ingredients?

Do you use only complex kitchen appliances at home? Unless you are like

my late grandfather, whose kitchen looked like the inside of an “As Seen on

TV” store, of course, the answer is no. What’s much more likely is that your

kitchen looks similar to mine and is organized (or disorganized) with simple,

multitasking tools like knives, cutting boards, pots, and pans to prepare your

repertoire of go-to meals (think Taco Night). Expensive ingredients and

complex tools occasionally appear to help cook trickier meals, but what a

pain it would be to cook complicated meals for every breakfast, lunch, and

dinner.

It’s such a natural idea, but we seem to have the opposite urge when it comes

to our work in IT. Why do we find it so difficult to KISS in IT?

Although the concept of KISS is ancient, the specific phrase has its roots in

engineering. The story goes that an aircraft engineer by the name of Kelly

Johnson coined the term while working at Lockheed Martin. During this

time, Johnson gathered a team of engineers tasked with designing jet aircraft.

He proceeded to hand out a small set of basic mechanics tools and chal‐

lenged them to design the aircraft in such a way that an average mechanic

with this same set of tools could perform the repairs. Therefore, the engi‐

neers’ designs had to consider both how the aircraft could break and how

those breakages could be repaired “simple, stupid.”

Cloud native systems are not jet aircraft, but they are complex, they’re inter‐

connected, and they will break. It’s not a matter of if they will break, but

when. As we design and architect systems, we become experts in those sys‐

tems. We know the intricacies of the design, but we forget that our creations

will continue on after us and need to be maintained by others who cannot be

expected to have the same familiarity. As cloud engineers, we need to take

97 Things Every Cloud Engineer Should Know140

Senior Cloud Engineer and Owner of DevOps Gorilla LLC

seriously our role in designing and building systems that are going to fail.

We need to consider how to prepare for failure by creating systems that

someone else can reasonably repair when they break, using only a simple set

of tools and a decent understanding of the system. Only then can we ensure

that Johnson’s “simple, stupid” approach lives on in cloud engineering

culture.

Here are some ideas that will help you apply KISS in your cloud engineering

practices:

• Avoid premature optimizations.

• When you need to make complex optimizations, provide detailed

documentation.

• Start small and use minimum viable products (MVPs) to help guide

design decisions.

• Read the documentation to understand the cloud APIs you consume.

Pay close attention to rate limits and error codes.

• Focus on learning best practices and avoid needlessly complex and con‐

fusing systems.

• Remember that your idea of what’s simple is different from that of your

operators.

• Use standardized naming conventions that provide context.

• Make time to delete unused cloud resources so they can’t distract from

what’s important.

• Understand who’s operating your system and their capabilities.

• Find your system’s failure scenarios and provide runbooks to resolve

them.

• When in doubt, take Albert Einstein’s advice: “Make everything as sim‐

ple as possible, but not simpler.”

Good luck, happy clouding, and don’t forget to KISS it!

Collective Wisdom from the Experts 141

Maintaining Service
Levels with Feature Flags
Dawn Parzych

Cloud engineers are responsible for designing, monitoring, and deploying

applications to the cloud. These applications must be scalable, reliable, avail‐

able, and fault-tolerant. That’s no small feat. The need to continuously inte‐

grate and deploy new features may be at odds with maintaining acceptable

service levels.

Customer demand for new features and capabilities is driving companies to

push features out faster, but those same customers also expect available and

reliable application performance. How do you balance these conflicting pri‐

orities? Implementing a CI/CD pipeline with a battery of automated tests is

the first step. But as applications grow, so will the differences between stag‐

ing and production—impacting your ability to find all bugs before your cus‐

tomers do.

Building a CI/CD pipeline is not enough because staging is not production.

You need to put safeguards in place to safely deploy, test, and release features

in production without negatively impacting customers and the bottom line.

Pushing out new features can result in service outages, no matter how much

testing you perform. You need to be able to deploy code without releasing it

to all users via feature flags.

Decoupling feature releases and code deploys with feature flags makes it pos‐

sible for you to do the following:

• Progressively roll out a new feature via:

— Ring deployments or canary releases, whereby different groups of

users gradually receive the feature for testing and to manage the risk.

For example, first the development team has access, then internal

users, and finally all users.

97 Things Every Cloud Engineer Should Know142

Developer Advocate at LaunchDarkly

— Betas, whereby preselected users receive access to new features to

provide feedback on existing functionality, identify bugs, and suggest

new functionality.

• Utilize circuit breakers and kill switches to turn off a poorly performing

feature without rolling back to a previous release.

• Test in production to validate the interoperability of services.

• Synchronize the rollout of a feature that requires changes in many com‐

ponents or microservices.

After deploying code, you need monitoring and observability tools to collect

diagnostic data and inform you of whether the application is performing as

expected. If something goes wrong, an alert needs to be triggered that kicks

off an incident response process to minimize the impact on users.

Feature flags or toggles are a critical piece to this process, enabling teams to

move faster, reduce risk, and maintain control. A feature flag is an if-then

statement.

If a user meets a set of criteria, that user gets access to the feature. For exam‐

ple, if you are running a beta for a new chat widget in your application, only

members of the beta group should have access to the widget. A feature flag

can control this behavior:

if (profile["beta"] == true) {

 displayWidget();

}

When getting started with feature flags, here are some tips to consider:

Start small.

Choose one feature, a group of features, or a team to start. You can do a

lot with feature flags. You will overwhelm yourself and others if you try

to do everything at once. Beyond release management and operational

efficiency, you can use feature flags for experimentation and entitle‐

ments. Once you have a robust feature flagging foundation, you can

expand into those use cases.

Consider feature flags at the design stage.

The right time to think about whether to implement a feature flag is

when you first start designing and planning the feature. Design consid‐

erations should include naming conventions, who can toggle the flag,

the purpose of the flag, and whether the flag is short-term or permanent.

Collective Wisdom from the Experts 143

Use feature flags with other tooling.

Think about how to use feature flags with existing tools in terms of cre‐

ation, deletion, and toggling of flags. Put practices in place to toggle fea‐

tures from monitoring and incident management tools. When a feature

is wrapped in a flag, you can release it to a small group of internal users

initially. If monitoring and observability tools identify a problem, the

feature can be toggled off manually or programmatically via the incident

response process. Avoid technical debt by writing a pull request to

remove a short-term flag at the same time the pull request to add the flag

is created.

Feature flags are an essential part of the CI/CD pipeline for cloud engineers.

They help you release features quickly without worrying about incidents

negatively impacting service levels.

97 Things Every Cloud Engineer Should Know144

Working Upstream
Eric Sorenson

Along with the rise of cloud computing has come the rise of foundation-

managed open source. A huge number of valuable cloud-related projects

exist, but using upstream open source software (OSS) is not without its prob‐

lems. The old saying “There’s no such thing as a free lunch” goes double for

“free” software. Bugs inevitably bite, features don’t work as advertised, and

sometimes deeper design problems prevent a clean integration. These guide‐

lines will help maximize the benefits and minimize the cost.

Let’s assume you’re working on a new initiative and want to incorporate an

open source project as a significant part of the product. You hope this will let

you speed up your time to market and focus in-house development on the

features that add real value, but you’re not sure how to get started.

Survey the Landscape

Depending on what you’re working on, more than one project may be suit‐

able to use. Start out by listing your top three to five requirements and scor‐

ing the projects with a low/medium/high ranking. Then add nonfunctional

criteria:

How active is the project?

Having hundreds of open issues isn’t necessarily bad—just look at

Kubernetes!—but if the repository has gone months (or years) without a

release, that could be a warning sign.

How amenable is the project to external contributors?

Look at the commit history to get an idea of how many people and

organizations have contributed code.

What’s the governance model?

Some nominally open source projects have, in practice, a restrictive

license, an onerous contribution model, or a decision-making process

that favors a single vendor.

Collective Wisdom from the Experts 145

Technical Product Manager

A single low score isn’t necessarily disqualifying, but the aggregate should

give you an idea of how suitable each project will be. Plus, your scoring pro‐

vides a great lead-in for the next step.

Get Internal Approval

Hopefully, your company is amenable to the idea of open source software. If

not, it might be time to look for another job. (Just kidding…maybe.) In any

case, it’s a good idea to present your ranked choices to your manager and

team. The reality is that working effectively with open source does have a

cost, and it’s important to account for it early so you don’t get the rug

yanked out partway through.

Join the Community

A big part of that cost is the effort it takes to become a good community

member. This is often called chopping wood and carrying water: unglamo‐

rous work to help the project and community. All projects need people who

improve documentation, respond to new users on Slack, and maintain

release automation. This has several benefits:

• You increase your familiarity with the codebase, which can help when

you need to modify it.

• You gain reputational currency, making it more likely the community

will help you.

• You improve the viability of the project overall, effectively investing in

its future.

Design First, Then Code

As your usage of the project deepens, you may need a substantive new fea‐

ture. There can be a strong temptation to keep your implementation local.

While this approach may be quicker, resist the temptation and do the work

upstream. Local changes mean you have to carry the patch to each new ver‐

sion, which becomes expensive and brittle over time.

To work upstream, instead of coding up the most convenient thing, start a

design discussion with the project maintainers before you write code. Many

projects have a process for this, like the Kubernetes Enhancement Proposals,

which are required for complex changes. If your project isn’t that formal,

you can still use the template as a writing prompt.

97 Things Every Cloud Engineer Should Know146

This approach is counter to many developers’ instincts, but it produces bet‐

ter outcomes. Because the discussion happens in the open, the design can

take into account different perspectives, past experiences, and broader

requirements.

Happy Upstreaming!

Open source can work like a mechanical flywheel for your development

velocity: it takes an initial investment in energy to get the wheel spinning,

but other people are helping with their own contributions too. Once it’s acti‐

vated, the momentum of the project can carry you to places that would be

difficult to go alone.

Collective Wisdom from the Experts 147

Do More with Less
Ivan Krnić

Cloud infrastructure introduces many benefits, such as elastic scaling,

immutable deployments, and a pay-as-you-go pricing model. Pay-as-you-go

is a huge advantage since we’re paying only for what we’re actually using, but

also a liability if our applications are not as efficient as possible. It’s not that

we didn’t want our applications to be efficient before the cloud—it’s just that

the pay-as-you-go model has made this even more important, since cloud

usage is billed by actual resource usage.

The traditional client/server programming model relies on a thread pool.

Whenever a client makes a request to the server, one thread from the server’s

thread pool is dedicated to processing that request. If that request processing

includes a blocking call to an external resource, the whole thread is idling

until that call is finished. Because one thread is dedicated to each client

request, if there are more concurrent client requests than threads in the pool,

excess client requests will be dropped. To increase the application capacity,

we need to either increase the size of the thread pool or scale the application.

In the former case, we’re increasing memory usage. In the latter, we’re also

increasing the CPU usage. Both actions seriously impact cloud usage and are

reflected in the pay-as-you-go pricing.

A better way of designing our applications that enables us to achieve better

performance with fewer resources is called the reactive programming model.

In this model, only one thread (event loop) listens to client requests. As soon

as a request comes, it is dispatched to a specific event handler for processing

in that same thread. The thread is never idling because all operations are

implemented as nonblocking. If a blocking operation needs to be performed,

the operation is called and the thread is immediately released for other client

requests. When the blocking operation is finished, it throws an event signal‐

ing that a particular client request is ready to continue processing.

97 Things Every Cloud Engineer Should Know148

Head of Software Development at CROZ

Although only one thread is needed for a reactive programming model, typi‐

cal configurations use as many threads as there are available processor cores.

That way, every thread executes on its dedicated core and there are no con‐

text switching penalties.

While the traditional programming model handles excessive client requests

by simply dropping them, the reactive programming model supports a back‐

pressure mechanism that controls producers and keeps them from over‐

whelming the consumer with too many requests. Backpressure is a far more

appropriate method since no requests are dropped and the flow of value

through the system is adjusted for optimal end-to-end flow instead of for

maximizing local optima of each component in the processing flow. Back‐

pressure aligns nicely with the theory of constraints. Once the optimal end-

to-end flow is achieved, we can further identify system constraints

(processing bottlenecks) and decide how to exploit them and possibly elevate

them to deliver an even more efficient system.

The key advantage of the reactive programming model is high efficiency.

With only a couple of threads, we can do as much as we could with a thread

pool of 200 in the traditional programming model. Fewer threads mean

lower memory consumption as well as more efficient and cheaper running in

the cloud. Under light load, there will probably be no difference compared to

the traditional model. But under heavy load, the differences are staggering:

sometimes as much as 3× more efficient while using 50× fewer threads!

Collective Wisdom from the Experts 149

Everything Is Just Ones
and Zeros
Lukas Ruebbelke

Programming is inherently complex because we are trying to capture and

express a reality that is, by nature, very complex. To further complicate the

issue, our exposure to the full nature of the complexities of our domain is

constrained to a particular and limited context, which is heavily influenced

by where we fall in the organizational chart. For instance, frontend develop‐

ers are experts at building web applications, but rarely understand the infra‐

structure required to put those applications into the cloud. The immediate

symptom of this condition is that we develop a myopic view of our world

and establish causal relationships where none exist. The longer-term and

ultimately more costly outcome is that we end up doing the same things over

and over at every abstraction layer and calling them by different names.

As engineers, it is easy to get fixated on the ergonomics of a particular frame‐

work or technology and to project our frustrations onto the perceived defi‐

ciencies of whatever we are working with at the time. Though a reasonable

reaction, it usually results in a causal association where there is a correlation

at best. The most common example I see occurs when someone tries to

explain why they do not have adequate test coverage in their project. The

response usually goes something like, “Well, we would write more tests, but

it’s too hard because Some_Testing_Framework is impossible to get work‐

ing!” I am almost always willing to bet money without seeing any project

code that testing is so hard not because of bad technology, but because of

bad code. It is hard to write good tests for bad code!

Once we step back from our current situation and examine the multiple

dimensions that it encompasses, from the technical stack to the organiza‐

tional hierarchy to the business domain, we can start to realize that common

themes weave each layer together. As a software engineer, how do you know

your code works? Your tests pass. As an engineering team, how do you know

that you are building the correct thing for your stakeholders? By using Agile

97 Things Every Cloud Engineer Should Know150

VP of Developer Growth at BrieBug

software development. As a company, how do you know that you are bring‐

ing the right product to the market? Lean product development. At the high‐

est level, how do we know anything? Feedback loops. Unit tests, Agile

software development, and Lean product development are all forms of feed‐

back loops.

Hardware has seen an unbelievable trajectory in terms of raw power, but at

the end of the day, it is still a bunch of tiny little switches flipping on and off,

making ones and zeros. The only difference is that the composition of these

switches has become a little more sophisticated. Modern software has explo‐

ded in complexity as technology advances and markets evolve. Yet, at the

end of the day, we are still using the same basic patterns over and over.

I believe we can summarize everything we do as programmers as four basic

things: nouns, verbs, conditions, and iterations. Nouns are data structures

that model our domain, while verbs are the methods that allow us to perform

units of work. Conditions allow us to decide what work to do, and iterations

allow us to do a unit of work more than once. That is the extent of what I do

as a programmer. I can reduce every enterprise-level application that I have

ever put into production down to these four things.

So what does this mean? If developers, especially aspiring ones, were to

worry less about the hottest new framework on the block and instead focus

on understanding where the “ones” and “zeros” are, they would be exponen‐

tially more adaptable and effective. Frameworks come and go. Languages

come and go. Platforms come and go. But first principles and patterns will

always exist, because they are the ones and zeros. When you start to look at

everything in the context of the bigger picture, you realize everything is just

ones and zeros. We just have different names for them.

Collective Wisdom from the Experts 151

Be Prepared to Repeat
Ricardo Miranda

My first car had a remote with a single button to lock/unlock the doors. The

car behaved as a finite state machine: if the doors were locked, pressing the

remote’s button would unlock them; the next time, the doors would lock

again. This was really annoying. How I wished the remote had distinct lock

and unlock buttons!

According to Wikipedia, “Idempotence is the property of certain operations

in mathematics and computer science whereby they can be applied multiple

times without changing the result beyond the initial application.”

In the cloud, systems tend to be decoupled, with components communicat‐

ing among themselves via asynchronous message passing. Eventually, dupli‐

cate messages appear, either intentionally or unintentionally. By preparing

for idempotency we can avoid costly refactoring.

Strategies to Cope with Duplicate Messages

Strategies to deal with duplicates vary in several dimensions. The first thing

to consider is how expensive it is to compute more than once. Making serv‐

ices aware of which messages were already processed creates an overhead

that should never be underestimated.

Often it is easier to just repeat operations. This is a big leap from the mono‐

lith (a single large application)—a leap fundamental to becoming a cloud

engineer.

Stateless Consumers

Stateless consumers are servers that do not keep track of processed messages;

every message is processed independently from previous and future mes‐

sages. Every consumed message is processed, even if it is a duplicate. Algo‐

rithms and storage must be prepared for this. For example, imagine a service

that processes data and stores results in a database. It may be necessary to

97 Things Every Cloud Engineer Should Know152

Gig Data Engineer at Closer

implement a cleanup stage before processing to avoid writing duplicates.

Storage systems that do not allow updates may need custom solutions.

At times, duplicated results may not be a big issue. For instance, counting

the number of hits on a web page may not require an exact number.

Whenever processing a message is irrelevant after a time frame, this infor‐

mation should be included in the message itself (preferably in the header).

Most messaging systems have the concept of headers (or attributes), where

metadata is attached to the message payload. Consumers can discard old

messages.

Keeping State

Stateful servers are servers that keep track of processed messages. These mes‐

sages should be identified with some metadata, not with the payload itself.

This is very important to distinguish between repeated messages and mes‐

sages with equal payloads. When creating a message, attach an identifier

attribute that makes duplicates explicit.

As in stateless servers, if there is a time window after which processing a

message is no longer required, create a time-to-live header so that old mes‐

sages may be forgotten, reducing the effort of keeping state and checking

whether a message was processed.

If the state is stored in an ephemeral structure, the same rules applied to

stateless servers apply to stateful servers. If the state is lost or incomplete, the

service may not be aware it is receiving a duplicate.

When a service with several instances processes messages in parallel, it may

be necessary to share state among them, usually with the help of a database.

The choice of the state persistence stack depends on the reliability/perfor‐

mance axis that is part of the decision making.

Conclusions

Cloud native computing is intrinsically distributed in nature. In distributed

decoupled systems, it is extremely hard to be sure that messages are received

exactly once and that retries are never necessary. It is simpler to assume,

right from the project’s inception, that repeated messages will eventually

appear. Every step must include the assumption that a message may be a

duplicate, and a strategy to deal with that should be in place.

Collective Wisdom from the Experts 153

Your Greatest Products
Are Not the Applications
and Services You
Produce
Ryan Bell

This may come as a shock if you’ve been in the industry for a long time, hav‐

ing learned to keep your head down and assume the role of a productive

software developer, but you are not solely in the business of delivering appli‐

cations and services. Software developers indeed develop software, but I

believe that it is as imprecise a description of the nature of your true role as it

would be for a musician to describe their calling as delivering etched vinyl

and audio encodings to record labels. Applications and services are your

media. They’re a packaging layer that encases a greater offering you can

extend out to the world. You are in the business of delivering uninterrupted

Magic Moments, one after the next.

That first time you played Super Mario Bros. with your friends around a

Nintendo Entertainment System and stumbled across a Fire Flower power-

up—that was a Magic Moment. Soon after acquiring this new superpower,

you were no longer pushing buttons on a square controller; you were joy‐

ously tossing fireballs across the screen like a boss, experiencing this magic

uninterrupted. Now, remember that before that moment, your character was

just an ordinary plumber navigating drainage pipes in an 8-bit world. There

is a tremendous difference in mindset between solving the problem of effi‐

ciently animating pixels on a screen or moving sales units, versus the task of

translating a brief feeling of infinite possibility through your software to the

next generation of artists and problem solvers.

The greatest product you can deliver to your customers is the superpower.

The power-up. The Magic Moment! These are found inside your applica‐

tions and services, at the intersection between functionality, aesthetics, and

97 Things Every Cloud Engineer Should Know154

Director of Creative Energy at Vim Labs

surprise and delight. It’s when an end user suddenly encounters an unexpec‐

ted flash “wow-that-is-really-f***ing-cool” moment, leaving a lasting impres‐

sion, coloring the way they express themselves as they share this gift with

their friends, family, and coworkers.

Should you choose to accept it, your mission is to design these moments,

construct bridges to connect them, and smooth out the edges interrupting

their flow. While this undertaking may entail code refactoring, microservice

architecting, project management oversight, user interface/user experience

(UI/UX) research, DevOps monitoring, unit testing, learning new languages,

installing new frameworks, and navigating the surrounding territory of the

software development landscape, these are not the goalposts. Instead, they

line the field leading toward the ultimate magic destination.

You can envision a 2D chart being plotted of Magic Moments: Minor

Annoyances / time, as end users experience your products over the lifetime

of their service from one feature to the next. The equation for the best possi‐

ble product that you can deliver can then be expressed as P = (MM / MA) / t

× L. Rather than focusing on the how or the why, I propose keeping your eye

on the wow.

From this new vantage point, what changes can you make to produce a shift

from mere problem solving to superpower bestowing?

Collective Wisdom from the Experts 155

Avoid Big Rewrites
Simon Aronsson

We’ve all been there in some form at one point or another. Our product

owner has asked us how long it would take to enable our software to run

serverless.

For the last couple of hours, you’ve been browsing the code, trying to make

sense of it. But it’s just too old, too much of a patchwork. Layer after layer of

added abstractions and cross-dependencies. Names of past engineers you’ve

never heard of. It almost feels like you’re about to break the F12 key on your

keyboard just repeatedly calling Go to Definition.

At last, tired and full of frustration, you give up. You go to your product

owner and say that the shape of the code is just too bad. That it would

require a total rewrite. Two days later, the product owner gets back to you

and gives you the go-ahead. Full of excitement, you assemble the team to tell

them the great news…

I’ve been in this situation enough times to tell you that your chances of tak‐

ing on a task like this and succeeding are slim to none. Every time I’ve been

part of a project like this, we’ve always come to regret it. Common outputs

have included (although not been limited to) the following:

• Not making deadlines

• Going over budget

• Introducing obscure bugs

• Burning out team members

• Losing stakeholder confidence

If the codebase is too complex or complicated to understand and refactor,

it’s definitely too complex or complicated to rewrite. So what to do?

97 Things Every Cloud Engineer Should Know156

Developer Advocate at Load Impact

Step 1: Be Realistic

It’s almost always possible to migrate your workload to a virtual machine in

the cloud as is. While this might not be exactly what you were hoping for, it

will still allow you to leave the confinement of your local datacenter and lev‐

erage the benefits of not having to manage your hardware, or even OS,

yourself.

Step 2: Utilize the Strangler Pattern

The strangler pattern is used to incrementally modify an existing system by

extracting parts of it gradually. Say, for example, that your application is

used for order management and consists of about 40 main workflows.

Instead of rewriting all 40 workflows at the same time, pick one with a limi‐

ted scope and extract that into its own serverless function or microservice.

Once this is done, redirect all printing requests to that function or microser‐

vice and remove the now redundant code from your monolithic codebase.

Step 3: Repeat

Rinse and repeat until the monolith has completely vanished, or you feel

you’re done extracting all the high-value, change-prone parts of your system.

In addition to being a lot less risky, this will also allow you to abandon your

migration efforts at any point with the system intact, still delivering as much

business value as ever.

Collective Wisdom from the Experts 157

Lean QA: The QA
Evolving in the DevOps
World
Theresa Neate

When you see DevOps being practiced, but the QAs (or testers) still relega‐

ted to the “checking things” corner and not explicitly and proactively

involved in providing input into both applications and infrastructure code,

ask yourself: are we perhaps doing the very opposite of what DevOps was

meant to be?

Beware the Cargo Cult

Most of us know the tale of how DevOps was conceived, and I trust most of

us read The Phoenix Project by Gene Kim et al. (IT Revolution Press, 2013)

as one of our first DevOps books. Therein we learned that DevOps is meant

to be a collaborative and efficient partnership between all disciplines to ach‐

ieve a common goal, which ultimately means having working software in a

production system, delivering value to customers.

When DevOps excludes other team members, like security or QA, we have

missed the point. DevOps is meant to be development teams working with

operations teams, not just individuals in developer and operations roles

working together. The QA role is considered to be a member of the develop‐

ment team. The QA is therefore intrinsically a member of DevOps.

If QAs have no input into operations or continuous delivery conversations

because they are “not developers,” but we think we are doing DevOps, we

are, in fact, practicing a cargo cult—an imitation and approximation of the

real thing done without a real grasp of why we’re doing it. If we are going to

do DevOps, it behooves us to know why we’re doing it, and not only how.

97 Things Every Cloud Engineer Should Know158

QA Practice Lead at Slalom Build Australia

Waste

Agile software development and DevOps fundamentally assist with reducing

waste. (I generally prefer not to use these capitalized words as they have

become overloaded, so I use them here cautiously.)

Project churn, conflict, friction, slow responses, unreliable and unstable sys‐

tems, needless expenses, lengthy handovers, defects, time delays, failed

projects, manual overheads, double-handling, and many similar issues are all

waste.

Every time a feature is double-handled (such as the churn when a bug is dis‐

covered later), we have incurred waste. Feedback should be sought earlier

rather than later so that one may course correct or remedy issues as early as

possible and prevent waste.

QA Is Feedback

QAs do not provide assurance; they help provide and define analysis and

feedback. Monitoring is a form of feedback on the system’s behavior. Just as

monitoring is feedback, so is testing. Whether the testing is manual explora‐

tory testing or automated checks, it is feedback.

Testing tells you about components and relationships; monitoring tells you

about the system. To minimize and reduce waste, you want to receive that

feedback as early as possible, and you want that feedback to occur at mean‐

ingful levels and depths in your system.

Early Feedback

QA (testing and monitoring) should be done early and continuously. Receiv‐

ing early feedback enables you to act on that information and improve or

course correct as early as possible.

Your QAs can and should be involved in these conversations. If they cannot

be, then as their manager or peer, the onus is on you to empower them to

become involved.

Collective Wisdom from the Experts 159

The days of QAs telling you whether you’re OK to “go live” are numbered

(image credit: Milly Rowett). The whole team should know that, based on

the continuous feedback they have been receiving.

Lean QA

The reduction of waste (rework, defects, friction) by holistically testing the

whole system, early and continuously (and into production)—including

measuring what really matters and incrementally improving thereupon, and

using your humans intelligently in doing so—is what I call Lean QA. And I

consider it essential to DevOps.

97 Things Every Cloud Engineer Should Know160

Source Code
Management for
Software Delivery
Tiffany Jachja

Source code management (SCM), also known as version control, allows engi‐

neers to manage their software code. SCM provides benefits for developers

as they work on different parts of a codebase, collaborate, and deliver new

software releases. Done right, SCM enables development teams to build

applications while avoiding irreversible or breaking code changes.

Understanding Version Control

SCM tools provide version control for reverting, tracking, and correcting

software code. Think of version control as a timeline for your code revisions.

A branch represents this timeline. In the most basic of version control work‐

flows, you have the main branch. This main branch is often called a trunk.

You can progress within the timeline by making code commits. Code com‐

mits represent points within the timeline. Each point contains a copy of the

current source code. A code push uploads these changes to a repository. The

repository, or repo, holds your version-controlled code as a project.

A key concept is to introduce branches that spawn from points in time

within the main branch. It is common to have a branch that contains feature

development work.

For example, imagine a developer is working on a development feature for

version 1.0 of their product. They want to develop and make changes to the

codebase without affecting the main branch. Other developers depend on

the main branch as a stable copy of their codebase. The developer decides to

commit and push their changes to a different branch. This branch came

from a copy of the code from the main branch. Once the feature develop‐

ment is done, they can merge their branch changes back into the main

branch.

Collective Wisdom from the Experts 161

Tech Evangelist at Harness

A best practice for using SCM is always to maintain the trunk with clean

working versions of your code. The default branch for a repository is the

main branch. Anyone who clones the repository code should not need to

check out different branches to build the application on their machine.

It is also common practice to tag versions of code within the main branch.

These tags indicate specific releases of code; for example, a stable 1.0 release,

or a beta release. Anyone with access to your repository can correlate a tag

with a version of the codebase.

SCM keeps track of who made changes, where, and when within the code‐

base; it also allows engineers to compare code between commits or branches.

What Is Git?

Git is a popular SCM tool. Strategies for using Git, such as git-flow, emerged

as version control and became adopted as software practice. However, Git

strategies are not one size fits all.

It can be challenging to maintain and adapt certain structures and ways of

working. For example, git-flow may not be a good fit for high-performing

teams whose code needs to get out quickly and often. Because the pull

request model enforces an extra layer of approval to merge code into the

main branch, this adds an extra dependency to get to a software version

release. As seen with open source, however, git-flow is a great branching

strategy to manage larger projects with many contributors.

But it’s not only about branching. SCM does not negate “best practices” for

software development. Here are some considerations when working with

SCM:

Determine how your use of SCM lines up with your work and team.

How important is it to iterate quickly? Is this greenfield development? Is

there a high percentage of change failure?

97 Things Every Cloud Engineer Should Know162

Have SCM rules.

Set practices for the team on how and when to commit. Show an exam‐

ple of a commit message. Establish how you want the team to style com‐

mit messages to be informative and consistent.

Determine what gets stored in the repository.

Where should you keep workspace configuration or infrastructure as

code files? Find a structure that works for your ecosystem.

Consider integrating your SCM tool with your software delivery process.

A code commit could be a great way to trigger your software delivery

process or CI/CD pipeline, which can also tag release candidates for

consistency.

A major component of delivering better is working with others in a team.

SCM enables effective code revisions and versioning.

Collective Wisdom from the Experts 163

PART VII

Cloud Economics and
Measuring Spend

1 A version of this article was originally published at Contino.

FinOps: How Cloud
Finance Management Can
Save Your Cloud Program
from Extinction
Deepak Ramchandani Vensi

Time and again we see organizations run into some pretty big cloud finance

headaches:1

• Cloud spending is much higher than expected.

• The cost benefit can’t be seen from the datacenter lift-and-shift.

• Too much is spent on licenses and services that the organization doesn’t

have control over.

But the problem is not the cloud; it’s the cloud consumption model! The orga‐

nization’s financial approach to consuming the cloud is inherently flawed.

The cloud has fundamentally shifted the way organizations purchase tech‐

nology. But while organizations dedicate a lot of time and attention to trans‐

forming familiar disciplines such as engineering, security, governance, and

operations to operate in a cloud-first world, their finance and procurement

functions are still geared for consumption of traditional on-premises IT.

This causes a host of issues. A few common ones include the following:

• Inability to manage the shift from capital expenditures (CapEx) and

operating expenditures (OpEx)

• Inability to easily forecast tech spending

Collective Wisdom from the Experts 165

Transformation Director at Contino

• Inability to control the self-service cloud consumption model

How can finance and procurement adapt to the new world of the cloud?

Enter FinOps.

What Is FinOps?

FinOps is an approach to managing and operating cloud spending by break‐

ing down the silos in engineering, finance, and procurement. FinOps is

meant to drive a shift in culture in cloud financial management, akin to the

way DevOps and SRE have driven a cultural change in engineering.

It aims to bring together all the key functions involved in planning, procur‐

ing, consuming, managing, and governing cloud services in order to make

the right decisions and trade-offs when consuming the cloud without com‐

promising on the consumer experience and value that the cloud was meant

to offer in the first place.

FinOps prevents spurious cloud consumption patterns and optimizes cloud

consumption. Ultimately, it could save a cloud program that otherwise

would have been bogged down by spiraling costs.

Here are some core FinOps principles:

• Make finance and procurement part of the planning process with engi‐

neering teams, not the gatekeepers of cloud spending.

• Provide guardrails for shared financial accountability, which is federated

out to product teams.

• Design and architect with finance in mind.

• Use financial tracing to align cloud spending to product and customer

metrics.

• Provide real-time visibility of cloud spending for consuming teams.

These principles help you to optimize your cloud spending, empower your

product teams, and make good financial decisions based on clear metrics.

How Do You Get Started with FinOps?

A fundamental mistake most organizations make is to consider cloud finan‐

cial management and governance either as an afterthought or as a cost-

saving activity.

97 Things Every Cloud Engineer Should Know166

However, at Contino, we take an engineering-first, data-led approach to

FinOps. To build a successful FinOps function, we recommend starting off

with the following building blocks:

Use a cloud cost-control or FinOps policy.

This provides consuming teams with a control set to comply with in

order to achieve the financially controlled consumption of cloud resour‐

ces within the organization.

Have guardrails for the cost-control policy.

Implement a key set of controls as code-based guardrails within the

foundational cloud platform.

Establish a cloud benefits framework.

Establish a data-driven framework that helps articulate the benefits and

ROI that result from your cloud program.

Identify your cost drivers and metrics.

Identify and list the key cost drivers for application/product teams so

these can be traced back to business benefits and outcomes.

Offer visibility for everyone.

Provide real-time visibility on cloud spending for the consuming teams,

as it helps them make better decisions and understand the financial

implications of their cloud usage.

Establish a financial trace to your customer experience.

Just as engineering teams use application tracing to profile, monitor,

diagnose, and pinpoint any application failures, FinOps teams need to

be able to trace cloud spending to benefits and cost drivers.

Summary

Bringing all of these things together can help your business make data-

driven decisions that take into account cloud financial data, business met‐

rics, and organizational and consumer insights—and bring your finance and

procurement teams with you into the world of cloud!

Collective Wisdom from the Experts 167

1 A version of this article was originally published at The Art of Writing Software.

How Economies of Scale
Work in the Cloud
Jon Moore

Are you familiar with the economic theory of experience curves (also known

as learning curves)?1 For cloud computing, this theory explains not only why

it makes sense to outsource new datacenter costs to public cloud providers,

but also why it may make sense for you to stop operating a datacenter at all.

Experience curves were formalized by the Boston Consulting Group (BCG)

and describe how production costs tend to fall in a predictable fashion as the

number of units produced increases. Namely, the more you produce, the

better/quicker/cheaper you get at it. This is the essence of economy of scale.

These curves are usually formalized as a percentage cost: for example, a 75%

experience curve means that with each doubling of production, the marginal

cost of producing the last unit drops by 25%. So, for example, one unit might

cost $100, but the second costs only $75. The fourth costs $56, the eighth

$42, etc. Experience curves show a diminishing rate of return.

In the cloud computing case, we want to know the marginal cost of deploy‐

ing and maintaining servers. While we don’t know the actual learning rate,

typical experience curves fall in the 75%–90% range. So let’s assume datacen‐

ter server deployment follows a curve in that range as well.

Suppose you can rent a Linux virtual machine from your favorite public

cloud provider for 10 cents per hour. We can assume, since that public cloud

provider is a for-profit enterprise, that it actually costs them less than 10

cents an hour to provide it to you. Indeed, the 2018 10-K filing with the SEC

from Amazon shows its AWS business unit had $3 billion in operating

income against $12 billion in sales, or a margin of around 25%.

But how big are the public cloud providers? Recent estimates suggest that

AWS operates 1.4 million servers, Microsoft has over 1 million servers, and

97 Things Every Cloud Engineer Should Know168

Chief Software Architect

Google operates 2.5 million servers. At these scales, public cloud companies

have leverage to get volume discounts from their supplies, but have also been

forced to build automation and processes that are much more efficient—this

is the experience part of experience curve. However, there’s a markup, right?

For your use case, there’s a certain scale at which you can do it more cheaply

yourself than it would cost to rent from them. How do we figure out that

break-even point? Let’s take a look at a 90% experience curve for servers.

We’ve added a higher curve that adds a 25% margin to the base cost curve

(to represent retail pricing from the cloud vendor), and we’ve set the right

edge of the graph at 1.5 million servers. If we draw a line left from the retail

price at 1.5 million servers, we’ll eventually hit the lower cost curve. This is

the break-even point, and on our graph it occurs at around 345,000 servers.

In other words, unless you are going to buy and operate at least that many

servers, it is cheaper to rent them from a cloud provider!

But this is a conservative estimate. If any of the following are true, the break-

even point is even higher:

• The learning curve is faster (lower) than 90%.

• The provider is operating at a higher scale than 1.5 million servers.

Collective Wisdom from the Experts 169

• The effective margin is lower than 25% (perhaps you can get a volume

discount, or cloud provider competition drives the margin down over

time).

Finally, the public cloud providers keep growing: as much 25% year over

year by one recent estimate. This means they will continue moving further

down the experience curve, perhaps faster than you can yourself even as

your business grows.

Of course, cost is not the only consideration when deciding whether to use a

public cloud provider, but it’s an important one. And now, armed with an

understanding of experience curves and economies of scale, you have a pow‐

erful heuristic you can use in your decision making.

97 Things Every Cloud Engineer Should Know170

1 A version of this article was originally published at LinkedIn.

Managing Network
Transit Costs in the Cloud
Ken Corless

Cloud cost estimation is more complicated than ever.1 Many development

teams have a good idea of their computing and storage needs but are incapa‐

ble of estimating their network needs. If you’re ready to reduce your cloud

spending, here are some places to start. (While these tips largely use AWS

terminology, most apply to the other major cloud service providers as well.)

Make sure you are watching and measuring your costs. Use the AWS Billing

and Cost Management dashboard as well as Cost Explorer. Consider third-

party cost management tools, such as Cloudability or Teevity. Transferize is

a product targeted specifically at optimizing cloud transfer/network costs.

All of these tools have modeling capabilities—use them!

Set billing alarms (either in your cloud provider or your third-party tool),

especially when you are just starting out or deploying brand-new workloads.

Don’t use public/elastic IP addresses when you can use private IPs. This mis‐

take is both common and costly.

Leverage a content delivery network (CDN) like Amazon CloudFront or a

third-party CDN from a company like Akamai. You’ll still be charged to

move the content from your VPC to the CDN, but if you have a lot of com‐

mon traffic (such as web pages), these savings can add up quickly.

Stay within an availability zone (or region) in places where you are not look‐

ing to improve availability. Needless region-to-region costs are a killer.

Leverage data compression. Whether for web pages or video files, compres‐

sion makes a ton of sense when you pay by the byte.

Collective Wisdom from the Experts 171

Executive VP for Technology, Offerings & Partners,

DXC Technology

Look at your interface topology. With the popularity of hybrid and multi‐

cloud approaches, where solutions running in the cloud are hooked to solu‐

tions on premises (or on other clouds), mapping the interfaces is helpful.

The network topology will have performance implications as well, especially

for real-time interfaces.

When replicating data, wherever possible, send only the changes in data,

rather than forcing new, full copies.

By establishing a direct connection to the cloud, you can typically lower your

costs. The pricing model is different (lower bandwidth charges, but you pay

for active ports).

Reduce local processing. If you need to download data locally to your work‐

station, you may be able to leverage Amazon WorkSpaces as your worksta‐

tion, thereby keeping data in the cloud.

Check your automated multiregion replications (like DynamoDB) for inter-

region network transfer charges. What data truly needs to be multiregion? In

particular, terminate abandoned testing/development environments that

replicate needlessly.

Have an effective tagging strategy. With instances tagged and cost allocation

tags enabled, network charges can be associated with instances and ulti‐

mately the accountable application/solution teams.

Finally, place the accountability (and budget) for network charges on your

application and solution teams. (Actually, do this for all nonshared infra‐

structure costs.) People act differently when it’s “their” money.

97 Things Every Cloud Engineer Should Know172

Managing the Cloud
Migration Cost Spike
Manjeet Dadyala

Costs exist with any technology modernization effort, and this cannot be

understated when you or your organization is exploring or migrating to the

cloud.

All too often, one of the value propositions pitched by cloud providers, con‐

sultants, and parties that participate in the ecosystem is that the cloud will

save your organization money relative to current on-premises environments

and workloads. While this is true at many levels, it is also very untrue for

organizations that are beginning to explore, use, and migrate to the cloud

while still maintaining on-premises infrastructure and workloads.

Organizations are often surprised at their cloud costs if they fail to plan for

and manage the cloud migration cost spike. That spike is a key aspect of

cloud economics and total cost of ownership (TCO). But what is TCO? It’s a

value proposition; it’s a what-if scenario of your organization’s use of the

cloud based on several assumptions.

Failing to consider and adequately calculate all of the migration costs will

likely result in a spike that not only exceeds expectations but also will be

more costly to address after workloads have been migrated.

These costs often include the following:

• Discovery and planning

• Assessment(s)

• External consulting

• Network and infrastructure connectivity

• Proofs of concept

• Application preparation, refactoring, and readiness assessments

• Tooling, software, and licenses needed for the migration

Collective Wisdom from the Experts 173

Authorized Google Cloud Platform Trainer

• Deployment and migration activities

• Staff training and upskilling

• Turndowns of existing datacenters or colocation facilities

• Penalties for breaking existing software license agreements or location

contracts

To understand and successfully manage a cloud migration effort, a cloud

engineer in conjunction with other teams within the organization must put

effort into analyzing these costs, their associated timelines, and their impact

on a migration effort. This is especially true for organizations that will have

dual running costs—costs associated with maintaining existing technology

investments while incurring costs associated with cloud migration and mod‐

ernization. Moving to the cloud is not an all-or-none event. Most organiza‐

tions will not and cannot move their entire technology portfolio to the cloud

in a singular effort.

Migrations can be scoped, limited, and optimized for level of effort, cost,

risk, and speed. It’s both a science and an art requiring each organization to

determine a balanced mix of infrastructure, application, migration, people,

and process costs. Perspective, knowledge, experience, and upskilling will

enable the cloud engineer to not only expect the migration spike but also

plan for it and manage it in accordance with what fits with the organization.

97 Things Every Cloud Engineer Should Know174

Damn It, Jim! I’m a Cloud
Engineer, Not an
Accountant!
Michael Winslow

It was like any other Friday. Most of my calendar was blocked off with meet‐

ings that I had scheduled for myself so I could have time to take care of open

items before the weekend began. Then something drew my attention to one

particular email message.

The email was basically an automated report of our cloud spending sent

from our cloud provider. Out of curiosity, I decided to take a look at the link

title, “possible savings.” What I saw was interesting to say the least:

• Size: 8xlarge

• Instances: 12

• Region: us-east

• Average Utilization: 0.27%

Wait…that can’t be right, can it? Did that say 0.27% utilization!? How much

is that costing us?

After quite a bit of investigation and traveling from engineer to engineer to

ask, “Is this yours?” let’s just say that it turned out we were spending well

into the six figures on glorified sandbox environments, all because we were

completely unaware as a department of the financial implications of the

cloud.

Once I realized how important it is to track exactly what you are paying for

with the cloud, I became a bit obsessed. Not only did I want to know what

we were spending our cloud budget on, I wanted to know if we as a team

understood the most efficient ways to utilize cloud services.

Collective Wisdom from the Experts 175

Technology Leader

Since that enlightening Friday afternoon, I have never ignored the automa‐

ted email report from the cloud provider. Here are a few more things we’ve

learned along the way:

For compute and storage, utilize reserved resources/instances.

I’ll be the first to admit that a lot of our early cloud adoption simply con‐

sisted of “moving our bare metal” to the cloud. That is a great way to

gain understanding of the environment. But if you know that you have

VMs that are going to live this way for years, cloud providers will offer

you discounts. Do yourself a favor and get reserved pricing.

Moving to microservices? Think about network, storage, and monitoring costs.

With all the great advantages of moving to microservices, the cost is

often overlooked. Each new microservice increases the network traffic,

as these chatty services need to communicate with each other. You will

also find an increase in log sizes due to the additional tracing informa‐

tion that needs to be captured.

In our case, we also found that some third-party monitoring solutions

were slow to create a pricing model specific to the needs of microservi‐

ces. They’ve historically charged by the “instance” or “node” since mon‐

olithic architectures rarely grew very large. But as our microservices

count grew into the dozens, this billing strategy became expensive.

Always look for the /pricing page.

Cloud services have different pricing models, based on the type of ser‐

vice. Some services will bill based on instance size, while others will bill

based on traffic. This is important to understand. In some cases, you

may even decide to make changes to the way your software is designed

in order to take advantage of a cheaper solution.

As cloud engineers, we can no longer be oblivious to the financial impact of

our decisions. Every call to an API, every log statement, every moment of

computation has a real cost associated with it. This is an excellent opportu‐

nity to deliver measurable value to your company and your customers as

well as to stand out as a senior engineer.

97 Things Every Cloud Engineer Should Know176

Effectively Monitoring
Cloud Services Requires
Planning
Scott Pantall

“Fast, cheap, or good? Pick two.” This is known as the iron triangle maxim in

project management, but many cloud providers will have you believe that if

you just use the things they are selling, you can pick all three. They are not

completely wrong, but they’re not completely right either. If you can keep

track of performance, alerting, and billing, you can make educated decisions

to keep your application running just fast enough, just cheap enough, and

just good enough to keep all your stakeholders happy.

Your salespeople and users want things to be fast, available, and reliable. The

performance of your cloud-hosted services is integral to the satisfaction of

these stakeholders, so it will be important to keep track of metrics that can

result in slow or unavailable services. Before diving into the various ways

cloud providers can offer these metrics, it is important to plan for what you

want to happen in different scenarios. This is where cloud providers can

really shine. If memory usage, disk space, or network traffic is higher than

expected, what do you want to happen? Do you want more resources alloca‐

ted? Do you want systems to restart? Do you want certain people to be aler‐

ted? Cloud providers can do any combination of these things, but you can

take advantage of them only if you plan for them and use the provided tools

to your advantage.

Your organization is likely attracted to the cloud because it is seen as cheaper

than hosting things itself. Using a cloud provider means your team does not

need to hire IT specialists to manage and purchase servers and network

infrastructure to support your application. You just need someone who can

understand how to take advantage of the provider’s offerings. Unfortunately,

one of the downsides to using a cloud provider is the potential for hidden

costs to come up unexpectedly. Autoscaling resources is great for your users

Collective Wisdom from the Experts 177

Software Engineer at infinicept

but may result in unexpected costs if not managed and monitored. Take

mindful action to really know the cost of hosted services and autoscaling

options before you find yourself overusing them and running up costs.

Your development team takes pride in doing work that is complimented by

users, profitable to the business, and (most important to the development

team) easy to maintain and build on. Team members need to be aware of the

complexities of your cloud services and to be able to easily read and under‐

stand performance metrics in order to troubleshoot immediate problems.

They also need to easily understand performance metrics so they can prevent

and respond to user issues that cannot be solved by just using a cloud pro‐

vider’s solution. Making a proactive plan to allow your development team to

monitor performance and cost ensures they can do good work and keep

things cheap and fast.

Monitoring and alerting tools for cloud services are just tools. To keep all

stakeholders satisfied, it is important to have a plan to make the best use of

those tools. Without a plan, your well-meaning use of these tools alone will

not help you balance your stakeholders’ desires for fast, good, and cost-

effective software.

97 Things Every Cloud Engineer Should Know178

PART VIII

Automation

1 A version of this article was originally published on the Adarsh Shah’s website.

Principles, Patterns, and
Practices for Effective
Infrastructure as Code
Adarsh Shah

Infrastructure as code (IaC) is an approach that takes proven coding techni‐

ques used by software systems and extends it to infrastructure.1 It is one of

the key DevOps practices that enable teams to deliver infrastructure and the

software running on it rapidly and reliably, at scale, especially in the cloud.

Key Principles

Two key IaC principles are idempotency and immutable infrastructure:

• Idempotency means no matter how many times you run your IaC and

what your starting state is, you will end up with the same end state. This

simplifies the provisioning of infrastructure and reduces the chances of

inconsistent results. Idempotency can be achieved by using a stateful

tool with a declarative language, like Terraform, where you define the

desired end state and then it is Terraform’s job to get to that end state. If

it can’t, it will fail.

• Immutable infrastructure means instead of changing existing infrastruc‐

ture, you replace it with new. By provisioning new infrastructure every

time, you are making sure the configuration is reproducible and avoid‐

ing drift over time.

97 Things Every Cloud Engineer Should Know180

Independent Consultant

Principles and Practices

The following are important IaC principles and practices:

Source control

Everything should be in source control—even a script that you run occa‐

sionally—and should be accessible to everyone in the company so any‐

one can look at code and understand what is going on.

Modularizing and versioning

IaC helps with maintenance, readability, and ownership across various

teams. It also keeps the changes small and independently deployable. In

organizations that have separate teams such as networking and security,

it might make sense to separate various layers of your infrastructure and

give ownership to appropriate teams to allow better control.

Documentation

With IaC you should not need extensive documentation, but some is

still essential. Good-quality, up-to-date, and easily available documenta‐

tion helps not only the team that is maintaining IaC, but also its

consumers.

Automated tests

Adding automated tests for your IaC will help you find issues faster and

earlier in the cycle:

• Run linters and other static analysis on your IaC to ensure adher‐

ence to team and industry standards.

• Since the IaC tools are declarative, unit testing is usually not needed.

In some cases, though, it might be helpful (for example, when you

have conditionals or loops).

• For integration testing, provision resources in an environment and

verify whether you have met requirements. Remember not to write

tests for things that your tool is responsible for, especially if you are

writing declarative code.

• Running smoke tests with dummy applications helps in verifying

that you can deploy the types of applications you will be running on

your infrastructure. Use a dummy application to test scenarios that

your real application will face but that are not configured for

production.

Collective Wisdom from the Experts 181

Security and compliance

Making sure the infrastructure you provision is secure and compliant is

important. Using robust identity and access management for your IaC

helps the cause. Techniques like role-based access control reduce the

overall attack surface by giving just enough permission to perform the

operation required. Use a reliable secrets manager for any secrets needed

by your IaC. Running security scans after provisioning/changing infra‐

structure in a lower environment helps avoid security issues in produc‐

tion and ensures that security best practices are followed. Companies

with compliance requirements like the Health Insurance Portability and

Accountability Act (HIPPA) and the General Data Protection Regula‐

tion (GDPR) should use compliance as code to automate compliance

verification.

Automating execution from a shared environment

All the preceding steps should be brought together to execute IaC with

appropriate checks in a certain sequence to provision infrastructure with

confidence. There are two options for this:

• An IaC pipeline brings all the steps together by using a pipeline tool

like CircleCI, provides visibility to everyone dependent on the infra‐

structure, and notifies on a failure.

• GitOps extends IaC and adds a workflow (pull request process) to

apply a change. It could also have a control loop that verifies period‐

ically that the real state of the infrastructure is the same as the

desired state.

97 Things Every Cloud Engineer Should Know182

Red, Green, Refactor for
Infrastructure
Annie Hedgpeth

When a company decides to move to the cloud, I can guess what its main

motivation is: velocity! I’m sure you’ve been there. You plan a new project

and begin implementation. You get excited about seeing it come to life as

you deliver new features one after another. Pretty soon, however, the feature

requests start piling up, and you slip behind schedule. But what changed?

The growing complexity of your project forces you to spend more time test‐

ing your changes than you spend on actually making the changes. To meet

your stakeholders’ expectations, you begrudgingly accumulate tech debt and

promise to start integration testing as soon as you get a free cycle. Still,

you’re frustrated that nothing works, and your team is burning out. That free

cycle never comes.

Unfortunately, this is an all-too-common scenario in cloud infrastructure

development—but I promise you that there is a way to develop your infra‐

structure that is less stressful and more fun. This way is called test-driven

development (TDD), or red, green, refactor (which I prefer because of the

reassurance that a green passing test gives). TDD means that you will not

write one line of code without first writing a test for it. The workflow is to

write a test, run it, watch it fail (red), write the code to make it pass (green),

and repeat (refactor).

Here’s a simple example. Say you need code to spin up an Ubuntu machine

in Azure. Before you write the code that creates the machine, you first write

code that checks Azure for its existence. You have a plethora of tools at your

disposal: PowerShell, the Azure CLI, InSpec-Azure, and many more. Your

test fails because that machine doesn’t exist yet, so you now write the code to

make that machine exist, again using your preferred tool: Terraform, Azure

Resource Manager (ARM), etc. Now run the code to create the machine, and

then run the test to see if it’s there, and watch it pass. Rinse and repeat until

your entire environment is built.

Collective Wisdom from the Experts 183

Senior Cloud Automation Engineer at 10th Magnitude

Why go through all the trouble, you ask? Well, we like and trust our team‐

mates well enough, but how do we know that they’re testing their code? We

don’t unless we build testing into the development process. As a project

grows in complexity, manual testing becomes more cumbersome, and bugs

slip through the cracks. Getting things to work starts taking longer, and you

face burnout. However, if you have been building tests at the same time as

building your infrastructure as code (IaC) through a TDD practice, then you

not only already have the tests, but you will have enjoyed your development

process a lot more! Instead of spending excessive time trying to get one gar‐

gantuan thing to work, you enjoy seeing small passing tests all day long. You

can now dig the integration testing out of the tech debt pile and use it to cre‐

ate a simple continuous integration (CI) pipeline that will create a test envi‐

ronment of your IaC, run those integration tests, and have a gate that doesn’t

allow code to be checked into source control unless all of the tests pass. Now

you’re not stuck with bad code that you don’t know who broke. You’ve suc‐

cessfully tricked your team into making the right thing to do the easy thing

to do, and everyone’s development process is more enjoyable.

Moving fast is fun. Seeing the implementation of your plan come to life is

thrilling. Writing code and seeing it build and configure infrastructure in the

cloud is very satisfying. But if you don’t use integration testing—yes, even for

cloud infrastructure provisioning—then you will be slogging uphill the

whole time. As evidenced by DevOps Research & Assessment (DORA)

research, TDD is at the heart of velocity, success, and enjoyment of our

work. It cannot be underestimated or put off. If you’re an engineer, embrace

it, and if you’re a leader, champion its cause. It will pay dividends.

97 Things Every Cloud Engineer Should Know184

Automate or Not-o-Mate?
Judy Johnson

Ask a group of engineers how to DevOps, and many will say, “Automate all

the things!” That’s a great answer that definitely covers a lot of the DevOps

process, but it is not all DevOps is about. Here, I discuss why automation is

important, how it relates to DevOps, and when automation may or may not

be the right tool for the job.

Let’s take a step back and concentrate on automation. Why automate? There

are many reasons; among them are to save time, ensure consistency, reduce

the chances of human error, save the cost of a human performing the task, or

allow the process to be part of a larger automated process (i.e., CI/CD).

What do we automate? We automate tasks that are repeated often, are error

prone, or need metrics and status collection, as well as ongoing processes

such as testing and deployment. How do we automate? We use scripting or

computing languages; configuration management tools such as Puppet,

Chef, Salt, and Ansible; continuous integration frameworks such as GitLab

CI/CD, Jenkins, and Travis; cron jobs; APIs; and variations on these themes.

Now let’s talk about the DevOps phases: plan, code, build, test, release,

deploy, operate, monitor. Many of us are automating most of those phases

already. In my opinion, the cool thing about DevOps is that if you have com‐

pleted any phase, you have already made your task simpler.

So you have a process to automate—what do you do? The planning phase is

arguably the most important and the least automatable. To see what you are

doing, perform it manually, and then document what you have done. You’ve

already simplified life with instructions! Next, code or script your process,

solidifying the steps and building a product. The test (and peer review) steps

allow you and others to understand what’s been done from a slightly differ‐

ent perspective. Automations of the release and deploy phases are time-

savers, and can be reused as the product is continuously improved. In

production, continue to operate and monitor, as continuous feedback is

important.

Collective Wisdom from the Experts 185

Software Engineer at Onyx Point

Sometimes automation may not be the appropriate tool for the job—for

example, for code reviews. Yes, automated checks can add consistency, check

coverage, and reduce errors, but a human eye is still important in most situa‐

tions. Your process may need a manual step, such as checking interim results

or metrics, or entering a password. Most importantly, there is always a need

for human creativity. You may have your entire process automated, but

there are always improvements, bug fixes, and new requirements to

implement.

Another hindrance to the process is the naysayers—people who think their

job will go away if they automate too much of it, or are just not comfortable

with the tools. To these people, my response is that you are not taking away

your work; you are giving yourself time for more challenging and meaning‐

ful work.

My favorite thing about DevOps is the feeling of community. You will likely

reach a point where your product is fully automated and you can move your

creativity in another direction, but it is important to ensure that every step of

the way there involves interaction, communication, knowledge sharing, and

documentation. And feedback—you will definitely have lessons learned to

apply to your next creative endeavor. To make an analogy to my second-

favorite thing (after DevOps), baking: even a perfect recipe needs a little

human touch, and perhaps a slight tweak, each time you make it. So auto‐

mate away, but ensure that the human touch remains part of your process.

97 Things Every Cloud Engineer Should Know186

Beyond the Portal:
Manage Your Cloud with
the CLI
Marcello Marrocos

How long does it take to set up a server from scratch? Buy hardware, assem‐

ble, install the operating system, and it’s done. That’s how it used to be.

With the cloud, you can just log in to an administration portal with a

friendly and intuitive graphical user interface (GUI), and with few mouse

clicks and configuration settings, your server is ready. In less than five

minutes, you can remotely log in to your newly created server.

So far, so good. But imagine that you have to create 10, 50, or 100 new VMs.

Using the GUI gets impractical. The task that took you five minutes will keep

you busy for over eight hours if you need to create 100 new VMs manually,

repetitively. And for a significant part of the five minutes it takes to create

each one, you will be doing nothing but waiting for what you hope will be a

success message. Moreover, there is the risk of making a mistake when typ‐

ing the name or selecting the image.

But don’t worry, there is a practical solution for this: the command-line

interface (CLI). Every major cloud solutions provider has a CLI, for several

platforms. The structure of the commands may vary, but will often contain

the provider’s initials, the resource (subject), and the action (verb), plus the

additional parameters required for the operation.

For example, the following commands are used to create a virtual machine:

Microsoft Azure

az vm create

Amazon AWS

aws ec2 run-instances

Collective Wisdom from the Experts 187

DevOps and Cloud Advocate

Google Cloud

gcloud compute instances create

Note that those are only examples, and additional parameters, such as the

resource name, size, and image type, might be required for the action to

complete successfully.

Apart from the excellent documentation provided by the cloud providers, an

extra tip is the parameter help, which will give you the flags for the specific

resource and action, making it easy to check the required settings and differ‐

ent options.

Using the CLI by itself will not entirely solve the problem of creating 100

VMs. It will help to keep consistency on a few parameters, but you will still

be risking mistyping the names of the new VMs and will still need to wait the

five minutes for the command to complete for each item before running the

next one.

So, the next step is to incorporate the CLI commands into a script. This is

where the automation starts. With scripting, the sky is the limit. In this sce‐

nario, imagine that you create a loop in which you increment a number vari‐

able and use it to define the name of the VM. No more mistyping risk.

Moreover, the commands to create each VM will be executed one after

another, without the need to wait for one command to finish before man‐

ually running the next one. You just execute the script and come back eight

hours later with all the resources created.

That’s just a simple example, and more complex scenarios can be explored.

You can create conditions, log results, and execute other commands depend‐

ing on the results of previous commands, for example.

This doesn’t mean you will never use the portal again. For particular tasks,

the portal is my primary interface. For instance, I once needed to create a

new deployment slot for a web application on Azure. And after creating one,

I had to download the publishing profile to get the credentials and fill in my

deployment pipeline. I did this in the portal—punctual, fast, and accessible.

A couple of days later, I was asked to do the same for another system. But

this system had 54 web applications. No way would I do it manually 54

times! It was a matter of 10 minutes to research and create a script to iterate

through the web applications, create a new deployment slot for each, and

save the publishing template file into a local folder. The execution took less

than two minutes.

97 Things Every Cloud Engineer Should Know188

Besides these particular tasks, CLI scripts can also be used on automated

CI/CD pipelines for specific actions; for example, to create on demand a web

application instance to host the code that you just built. Keep these scripts in

source control, and build a pipeline that consumes them when they change,

and you’ve started moving toward infrastructure as code—but that’s a sub‐

ject for another article.

Meanwhile, give the CLI a try. Understand the command structure, practice,

and get comfortable with it. You won’t regret it.

Collective Wisdom from the Experts 189

Treat Your Infrastructure
like Software
Zachary Nickens

Infrastructure is important. Infrastructure and application code are equally

critical to success as a cloud engineer. Most engineers either choose the cor‐

rect runtime environment, or iterate through runtime environments until

they find the appropriate one for their application. How you provision,

deploy, and recover whatever infrastructure you use is critical to choosing

the appropriate runtime. Most cloud engineers love designing, architecting,

developing, and deploying applications. Error reporting, debugging, logging

and log aggregation, and alerting generally are easily baked in when working

on a major cloud platform or working with common toolsets.

One of the greatest advantages to working in the cloud is the plethora of

managed services and tools readily available to meet those challenges. Cloud

is awesome! That’s a knife that cuts both ways, however. Managed services

that are easily turned on can be easily and accidentally turned off. A man‐

aged database or a function running on serverless compute can be inadver‐

tently dropped. And if you are provisioning and deploying those resources

by hand or via shell scripts, they can introduce unnecessary toil into your

downtime recovery and remediation strategies. And nobody wants toil.

Using managed services is a great strategy. Treating managed services as

infrastructure and defining them using declarative and idempotent tools is

an even better strategy. Define and declare your infrastructure as code, check

that code into your version control system of choice, and peer review that

code before changes make it into your live systems. This will save you down‐

time, heartburn, and headaches.

There are a wide variety of infrastructure-as-code patterns and tools.

The most basic form of IaC is to simply write shell scripts to create your

infrastructure. This method is not optimal. Scripting infrastructure provi‐

sioning is imperative and lacks the benefits of parallelized execution and

dependency management—it’s just a scripted version of manual

97 Things Every Cloud Engineer Should Know190

Site Reliability Engineer at Woolpert

provisioning/deployment. Maintaining and debugging scripts introduces

unnecessary toil into infrastructure. To avoid introducing all that potential

toil, we can use IaC tools and methods that are declarative and idempotent.

Each of the major public clouds offers its own IaC tooling. Amazon provides

AWS CloudFormation, Google has Cloud Deployment Manager, and Micro‐

soft has Azure Resource Manager. These IaC tools offer degrees of declara‐

tion and idempotency, but they all work only in their respective public

clouds. As multicloud and hybrid cloud approaches become more common

in the industry, this isn’t the direction we want engineers and SREs moving

in.

Good IaC uses idempotency to compare your code (desired state) and your

current state and to identify drift. Tools like Terraform present this compari‐

son and then give you a ready-to-go remediation plan to bring your current

state back into harmony with your desired state. Automating away infra‐

structure drift with IaC tools is essentially a superpower for cloud engineers.

Cloud engineers who design, provision, deploy, and remediate efficiently

and effectively build reputations as reliable and capable of delivering.

Collective Wisdom from the Experts 191

PART IX

Data

So You Want to Migrate
Oracle Database into
AWS Cloud?
Asha Kalburgi

Cloud databases are increasingly popular for reducing IT complexity and

operating costs as well as dependence on specialized IT teams. Oracle Data‐

base is great, but it’s also one of the most expensive and complicated options,

and it comes with proprietary code elements.

When thinking about moving your Oracle workload to the cloud, consider

that users have three ways to operate Oracle Database in the AWS cloud:

EC2

Use the AWS compute service along with the block storage service Elas‐

tic Block Store (EBS) to run traditional self-managed Oracle databases in

AWS. This requires a significant level of expertise from the IT team.

RDS

Use Amazon RDS for Oracle, which is a managed relational database

service. This falls under the database-as-a-service (DBaaS) deployment

model. AWS takes care of installation, hardware setup, configuration,

provisioning of storage, and network setups. It also takes care of server

maintenance, software patch management, version upgrades, and back‐

ups. Scalability/elasticity, reliability, and high availability can be

achieved easily.

Aurora

This is an RDBMS developed, designed, and optimized by AWS for its

cloud infrastructure and its DBaaS deployment model.

Collective Wisdom from the Experts 193

Database Engineer and AWS Developer/DBA

Migration of Database

Moving databases is the trickiest part of cloud migration, which often

requires downtime and reworking of the schemas; hence an iterative process

is better. Here is a brief checklist to follow:

1. Assess the current environment/database. This is an important step in

the overall migration process. Determine the features of the Oracle sys‐

tem currently in use; for example, partitioning, OS-level process control,

and size of the database. This will help in determining how much stor‐

age you need in the cloud and establish cloud compatibility. This must

be done at the schema for each of your databases. Depending upon the

results of this assessment, the migration complexity will vary.

2. Choose the deployment model: self-managed cloud database or DBaaS.

The easiest choice may be self-managed EC2 servers, as users retain full

control of the underlying OS, while a switch to RDS/Aurora is the most

involved method to replace an Oracle database. With a self-managed

model, EC2 users retain control and the ability to customize, though it

carries additional management and overhead costs for database admin‐

istrators (DBAs). When users choose the DBaaS model, DB mainte‐

nance tasks are handled by AWS, reducing the dependency on

availability of skilled resources for daily operations.

3. Choose the target RDBMS technology. If the target RDBMS is not Ora‐

cle, migration becomes a two-step process. The first step is to convert

the database schema with the AWS Schema Conversion Tool (SCT).

Then, you copy the data to the new data store using the AWS Database

Migration Service (DMS). AWS provides a set of Database Migration

Playbooks that guide you through the process, including configuration

settings, and present best practices to streamline a successful heteroge‐

neous database migration.

Helpful Tools

Two tools, already noted in the preceding checklist, are helpful:

AWS Schema Conversion Tool

SCT will generate a conversion report that identifies the issues, limita‐

tions, and actions required for the schema conversion. This report helps

with assessing the complexity of an RDBMS conversion, and whether a

DBMS can be converted. The tool also generates target schema conver‐

sion scripts to be applied before running DMS. These will do any

97 Things Every Cloud Engineer Should Know194

necessary code conversion for objects like procedures and views. Not all

objects can be converted, and SCT reports can help identify those

clearly.

Database Migration Service

After the schema is converted and updated for Postgres RDS/Aurora,

the DMS can load or copy data into the target database. You can arrange

for an ongoing replication from source to target with minimal setup and

configuration changes on the source database. Validations and Cloud‐

Watch logs help debug any issues in migration of data. Following migra‐

tion and validation, applications can be switched to a migrated database

with minimal downtime.

In my opinion, although the SCT and DMS tools simplify the most tedious

tasks in the process of data migration, they are nowhere near complete solu‐

tions. Heterogeneous migration does involve significant development efforts

and must be implemented after careful consideration.

Collective Wisdom from the Experts 195

DataOps: DevOps for
Data Management
Banjo Obayomi

As data becomes more ubiquitous in software projects, a culture has

emerged around providing processes to manage data with a DevOps mind‐

set. DataOps is a new paradigm that invokes DevOps principles and applies

them to managing data to create value. As a cloud engineer, being able to

enable your data team to work with the same efficiency as a software team is

important, thanks to DevOps principles. Looking at problems with a Data‐

Ops lens will help ensure that your data team can deliver value to your end

users. Here are three things to focus on when incorporating DataOps ideas

into your processes.

Reproducible Data

As cloud engineers, we are used to spinning up and spinning down environ‐

ments with a click of a button, but when it comes to collecting and storing

data, the process is not always so clear-cut. Questions like “What if we can’t

get data again?” or even worse, “We don’t know how we got our data”

should scare any engineer. Our data pipelines should follow the same princi‐

ples we use for tracking, deploying, and updating servers. This approach will

help reduce the fear of not being able to get data again, and remove bottle‐

necks caused by barriers to sharing and collaborating with our data.

Analytics as Code

As cloud engineers, we have created numerous YAML files depicting every

asset deployed into the cloud, and we understand how all of the pieces fit

together. When it comes to data analysis, we often rely on a dashboard pro‐

gram that’s completely siloed away in a Docker image. What if we took the

“as code” mindset and embedded analytics in a similar fashion? Analytics

can be thought of as code and configuration that describes actions upon data

in order to deliver insight to a user. Having a robust reproducible data pipe‐

line allows for an analytics-as-code process to emerge.

97 Things Every Cloud Engineer Should Know196

Senior Software Engineer at Two Six Labs

Data as a Platform

With a robust data pipeline and interoperable analytics, naturally the next

step will be to build solutions based on the insights gained from the data. As

a cloud engineer, one of the main goals is enabling the team to build solu‐

tions in a fast, secure, and scalable way. When it comes to data teams, these

principles are often forgotten, and nonscalable solutions are used to solve

problems. By offering data as a platform, we take the same methodology of

allowing developers to spin up their own environments to quickly prototype

ideas to data professionals that need that robust pipeline and analytics to

perform value-adding tasks.

As a cloud engineer, you’re an integral part of any team. As DevOps has

become more synonymous with the cloud, it’s time to start thinking about

the next paradigm shift. As machine learning and AI continue to grow in

adoption, data will become increasingly important in many organizations.

Your role will evolve to enable data teams to continuously deliver solutions,

and that will require a DataOps-focused perspective.

Collective Wisdom from the Experts 197

Data Gravity: The
Importance of Data
Management in the Cloud
Geoff Hughes

Data has gravity. Data gravity is akin to a black hole; data has a relentless

pull. Starting cloud application design with data management allows for cost

optimization and scalability. To understand data gravity, and begin to

explore data management, consider three principle areas: data availability,

disaster recovery, and data retention.

Data Availability

Data unavailability makes for a dismal user experience. What happens when

you choose instance storage instead of persistent storage, and you lose an

instance? Does your application handle that with application replicas on dif‐

ferent instances? Have you chosen the right storage performance tier so that

a performance issue does not present as data being unavailable?

Does the design account for data availability across multiple availability

zones in a region, and potentially across regions? If you use a platform like

Kubernetes, are you implementing the proper data availability to worker

nodes securely? If a data store exists in only one availability zone, and that

availability zone is lost, is your application still viable? Maximize data availa‐

bility by design.

Disaster Recovery

Disaster recovery is what enables you to run your application if its primary

region is impacted or becomes unavailable. Design the application to be

multiregion from the start, and disaster recovery becomes an inherent capa‐

bility of the platform. However, a multiregion design can add significant

expense and complexity. As an alternative, consider a primary region and a

disaster recovery/failover region.

97 Things Every Cloud Engineer Should Know198

SRE Senior Manager at NetApp

How do you define your recovery time objective (RTO) and recovery point

objective (RPO)? Do the storage or application technologies you’ve chosen

support these RTO and RPO definitions? How often do you execute disaster

recovery exercises (monthly, quarterly, annually?), and are those exercises

manually executed or automated? Are the exercises successful?

Don’t underestimate the role of data gravity in a disaster scenario. How fre‐

quently is data updated, changed, or added? What is the latency between

regions, and can you replicate the data between regions within the required

time? Data that is fairly static has less gravity than data that is highly

dynamic.

Documentation is critical in order to have successful disaster recovery; don’t

assume any level of expertise when putting together a disaster recovery

workflow.

Data Retention

Data gravity increases with the amount of data retained. The speed with

which an application performs can be dramatically impacted by the amount

of data to process. Does the application require retaining all data forever?

Can a window be defined where the data is most useful? Fifteen months or

five quarters of data is a suggested starting point. Depending on your indus‐

try (financial institutions come to mind), active data retention may be

longer.

In addition to primary storage, backup and archive data retention also need

to be considered. Backup and archive should be considered separate use

cases. Backup data retention defines the ability to recover from a mistake.

Limit the backup retention time frame by considering how far you will want

to roll back your data. Do you want to roll back to a state five hours ago, a

day ago, or a month ago? Somewhere between 8 and 35 days is a suggestion

of where to start. Don’t neglect data backup frequency when determining the

time frame; if you take only one backup a day, you have already defined your

RPO as no less than one day. An archive data retention policy should be

aimed at long-term retention and support business objectives like auditing

(again, financial institutions may have well-defined long-term retention poli‐

cies that extend seven years or longer). Understanding the use case for

archive data will help define the best approach for implementing an archive

data retention policy and solution.

Collective Wisdom from the Experts 199

Data Gravity

Data has gravity. As you develop your cloud applications, consider the three

principles of data availability, disaster recovery, and data retention. Don’t let

data gravity suck your application into oblivion; manage your data from the

start.

97 Things Every Cloud Engineer Should Know200

PART X

Networking

Even in the Cloud, the
Network Is the
Foundation
David Murray

Despite all the hype and marketing focus on AI/ML and serverless, a huge

portion of cloud customers still struggle with networking. Unfortunately, too

many networking people come to the cloud and feel they have to quickly

diversify their skills and move toward the latest buzzword technologies. This

leaves many engineers in a jack-of-all trades situation as they attempt to shed

the core skills that got them to where they are now.

If you are a network engineer, your skills are very much transferable to (and

needed in) cloud computing. Become the cloud network expert and see how

many times you end up as the center of the meeting when your company or

customers are designing their cloud architecture. Whether they are looking

at an all-in migration, hybrid cloud, or multicloud solution, none of this

works without a solid network architecture.

Build upon your deep understanding of infrastructure and add the skills

needed to automate the network in the cloud. Learn infrastructure as code

and the ability to deploy your architectures quickly, in a repeatable manner.

You will soon find that everything you enjoyed about working as a network‐

ing engineer is still available to you in the cloud, but at scale! Now you can

design and build globally distributed networks and deploy these in minutes.

You can help your company or customers open up new revenue models

when you can showcase how they can quickly expand their technology stacks

to other geographic regions, and you can be the one to make this happen.

When you want to diversify, use your networking skills to your advantage.

Cloud-based solutions like containers, service meshes, the IoT, CDNs, and

edge computing all require deep networking knowledge. Let’s take a look at

Kubernetes as an example. The heart of what makes Kubernetes so brilliant

is the network. If you look below the surface, you will see that from ingress

97 Things Every Cloud Engineer Should Know202

Principal Solution Architect at AWS

controllers to container network interfaces to service discovery, these are

technologies that you are already very familiar with. You may also find that

the people who are running the Kubernetes clusters are not traditionally net‐

working people and could use your expertise.

Check out the latest trends in network technologies and understand how

they may be applicable to customers in the cloud. 5G will be the driving

force behind next-generation application architectures and technologies

such as augmented reality. Staying ahead of these trends means that you can

bring new perspectives to conversations that your colleagues are having. It

allows you to see around corners, and this skill is transferable to any career

path you will ever choose.

The key point is that you should not ever feel that your skills are no longer

required in the cloud or that you need to stay working in traditional net‐

working. You will be very much welcomed into the cloud community and

will find a voice quickly by showcasing what you already know. Embrace the

fact that you are an expert in infrastructure. Don’t feel that the latest buzz‐

word is the future of the cloud. Do, however, be curious about the latest

technologies; explore them, understand their benefits, and then go a little

deeper to see how they work at a networking layer. Then be the expert from

the network perspective and get involved in the design discussions. You will

find that becoming known as a cloud networking ninja pays huge dividends

for you and the companies you work with. Be the enabler, and the next time

you see somebody wearing the cool swag, be proud that you are the one

wearing the Run BGP shirt.

Collective Wisdom from the Experts 203

Networking First
Derek Martin

Far too often, organizations forget that the cloud, for all its serverless, PaaSi‐

fied glory, still relies on actual network routing to get the job done—and you,

as a cloud engineer, need to understand the basics to be successful. Each

application that you deploy into the cloud will have multiple independent

running parts with a network binding them together. How do you stay

secure? How do you maintain availability and resiliency in the face of disas‐

ter? Microsoft Azure’s networking primitives dazzle even the most hardcore

networking admins, but without careful planning, you and they can be sur‐

prised when the unexpected happens.

Traditional three-tier application designs with VMs sitting in each of three

independent networking zones can still be achieved in the cloud, but more

modern approaches can keep your application stack secure without the over‐

head. These include network security groups that get applied to a subnet-

based design and application security groups that get applied across

applications and their tiers. Azure Private Link allows public PaaS services to

enter this walled garden, but can be complicated by needs surrounding

transit routing, peering limitations, and traffic shaping. If you are bringing

the traditional three-tier application design to the cloud, keep this most

important aspect in mind: unless everything in your stack is a VM, forced

tunneling will cause a great deal of headaches, and there are more modern

ways to secure your applications—like Azure Firewall, Security Center, and

Advisor.

Hybrid application stacks that rely on PaaS or serverless components includ‐

ing Azure Functions, Web Apps, Kubernetes Service, and Database for

MySQL can operate using traditional methods, with limitations. Challenges

start to crop up if one of the application tiers remains on premises, however.

These complexities can often be avoided by moving that remaining tier into

the cloud as well or by leveraging App Service or Integration Service Envi‐

ronments. If you’re using Azure Kubernetes Service, make sure you under‐

stand the intricacies of your ingest controllers, secret managers, and—if you

97 Things Every Cloud Engineer Should Know204

Principal Program Manager for Microsoft Patterns and Practices

are using container instances for pod scale-out—networking considerations

on crossing subnet boundaries. While they are supported, do not rely on

large numbers of Hybrid Connection endpoints to connect your tiers, how‐

ever. Use ExpressRoute with peering enabled instead for production,

enterprise-grade connectivity to on-premises. Finally, never expose a VM’s

open port to the public internet without leveraging DDoS standard

protection.

Even for cloud native applications—those that have no on-premises or VM-

based needs—you still need to consider networking. From a security stand‐

point, you want to work with each Azure SKU to make sure that connections

are limited to just the correct endpoints. You also want to protect your appli‐

cation’s public endpoints behind Application Gateway within a region and

Front Door and/or Traffic Manager to remain resilient across multiple

regions. If your application (or part of it) is an API, leverage Azure API

Management, which now also includes a serverless/consumption-based

mode. Other considerations include the need for internal load balancing, the

limits of the serverless modes (yes, there are limits), and scaling up/out

appropriately.

In a disaster, the first thing that will need updating or controlling is the net‐

work. Have plans in place and practice shifting load around multiple regions.

Never take a single region dependency and make sure your data tier supports

the ability to move between regions with RTOs/RPOs that comport with

your organizational needs. Leverage Azure Front Door and/or CDN to stage

your applications’ static assets at the edge, as close as possible to your users.

In addition to protecting against regional failures, these steps will allow you

to shift load and maintain proper performance of your application in the

event of regional internet congestion or failure, and to keep your traffic

closer to the end users.

Collective Wisdom from the Experts 205

Handling Network
Failures in the Cloud
Shayon Mukherjee

In the era of cloud computing, network failures—especially transient ones—

are a given. These failures come in many forms and can originate from

servers, routers, load balancers, connection pools, software applications,

human errors, and, of course, the DNS. Writing software applications for the

cloud in a distributed system environment therefore requires an added

degree of care and a resiliency mindset. Use this mindset to incorporate

practices during software development that will allow your applications to

withstand these failures without disrupting customer experiences.

A common way to handle network failures is through the use of timeouts,

retries, and retries with backoff and jitter. As a cloud engineer, it should

become part of your DNA to enforce these practices when dealing with net‐

work connectivity or similar communication protocols over the internet—

because things always go wrong in production.

A timeout, in simple terms, refers to the maximum time allowed for a con‐

nection to sit idle. Lack of time-outs when combined with connectivity issues

to another service often leads to increased latency and resource exhaustion.

In such a scenario, a client and server are waiting on a request that may

never complete, resulting in a nonoptimal customer experience. As a cloud

engineer, you should put timeouts on all network call in order to reduce the

blast radius of failures.

Many modern-day applications and clients provide the ability to implement

timeouts on network calls. The hard part is figuring out the appropriate time

limit. What may work for a DNS resolution may not work for a database

query. A general rule of thumb is to look at past request duration (latency)

for the service(s) involved to find an acceptable baseline for optimal cus‐

tomer experiences. This process often requires a few iterations to settle on a

figure that is sustainable.

97 Things Every Cloud Engineer Should Know206

Infrastructure Engineer at Loom

Retries, as mentioned previously, are a nice way to combat transient failures.

Because of the nature of requests in the cloud, a subsequent request after a

timeout often yields success. When a client receives an error response for a

timeout, it is the responsibility of the client to retry. Retries in nature can be

belligerent, such that using retries without upper bounds is a recipe for

DDoSing your own systems. As a cloud engineer, unbounded retries should

tingle your spidey senses. Additionally, putting retries in place for every net‐

work call in the stack may not be wise. Pick your battles.

Backoff is a technique for performing retries gracefully, without overloading

or burning out your backend systems. A simple way to perform retries is by

adding a delay between calls. This approach is called a linear backoff. While

this is easy to implement and can handle transient failures in a majority of

cases, it does not help when a downstream service is impacted for a pro‐

longed period of time, as the retries sent at a fixed rate will continue to over‐

load the service.

Exponential backoff is a less aggressive form of backoff. As the name sug‐

gests, with this approach the delay between each retry increases exponen‐

tially until the request succeeds or an upper-bound retry limit is hit. This is a

more graceful strategy because it avoids overloading downstream servers,

which can result in resource starvation.

Backoff with jitter is another beneficial technique. While exponential backoff

allows you to spread the retries more scientifically than linear backoff, it still

leaves the backend systems open to request bursts on every retry, potentially

leading to resource exhaustion. To deal with this, we can add jitter to our

backoff strategy. In other words, we introduce randomness to the retry inter‐

vals. Instead of retrying at a fixed interval (exponentially), each client will

retry at varied intervals. This is especially beneficial when a large number of

clients are distributed and are coordinating with a specific set of central

backend systems.

Lastly, whatever strategy you settle on, be sure to test your settings in

production. :)

Collective Wisdom from the Experts 207

PART XI

Organizational Culture

Silos by Any Other Name
Brittany Woods

The principles of DevOps have taught us that we need to increase velocity

and innovation. To accomplish that, we want to “automate all the things”

and use the best tools available. We also want to eliminate the silos that for

so long have hindered our industry. The ultimate aim is to give teams

autonomy to innovate and drive business outcomes.

With the emergence of cloud platforms, we are no longer stuck with servers

that have to live in the company’s physical datacenter. Nor does the power to

build servers lie solely with systems engineers, relying on the time-

consuming process of submitting requests and waiting on setup.

As engineers, cloud platforms have provided us with a more accessible

method to hone our craft. This method has allowed us to learn the ever-

growing list of emerging technologies and take that information back to our

companies to drive the next phase of innovation. We do not need to build up

a datacenter in our bedroom closet, though many of us still do. Barriers to

entry, in this regard at least, have been lowered.

So, we’re all cloud engineers now. We live at the intersection of application

development and system engineering. Our job has changed once again, as it

so often does. We all must understand hundreds of tools and technologies,

advanced networking principles, security, CI/CD, application develop‐

ment…the list goes on and on.

The pressure to keep up with the latest list of technologies and get on board

with utilizing them is higher than ever. When the rapidly developing innova‐

tion of your competitors is added to the mix, that pressure is increased ten‐

fold. Cloud engineers are the new humans-of-all-trades. Yet, buyer beware.

The emergence of all of these easy-to-use and easy-to-license tools has led to

the latest in silo-forming fashion: tool creep. Every cloud engineer should be

aware of how the infliction can cause you to quickly go from practicing

DevOps to reestablishing silos in your organization.

Collective Wisdom from the Experts 209

Lead Cloud Automation Engineer at H&R Block

Suppose that you have a team with a fully implemented solution, and

another team is getting ready to solve the same problem but in a different

way. These two teams are now forming silos of work that only they under‐

stand. As responsible cloud engineers, our expertise is vital to keeping these

silos from forming in the first place. It’s incredibly easy to fall victim to the

glamour of newly available tools, but we have to constantly gauge whether

implementing these tools makes sense. What will using this tool buy us? Is

there something to gain? Is this tool uniquely equipped to handle our use

case? Does it do the same thing as what we already have?

We must not only understand the tools available to us but also be aware of

the functions and possibilities of other tools used within our organizations.

This process is vital to recognizing the warning signs of tool creep. The

adage “just because you can doesn’t mean you should” really rings true here.

As cloud engineers, we do not need to be experts in every tool—a notion that

has carried over from decades of IT practices of old. However, thanks to our

intimate position at the intersection of building and implementation, we

have knowledge that can make everyone’s lives easier down the road.

We need to make a concerted effort to guide our organizations down a path

that sets them and everyone else up for success, not one that drags us all

toward an imminent failure of death by tools. Again, we are the ones best

equipped to answer these questions and to make recommendations as a

result. Our positions and expertise are unique. Never forget it.

97 Things Every Cloud Engineer Should Know210

Focus on Your Team, Not
on the Cost
Guillaume Blaquiere

Public clouds come with a new capability: the real knowledge of cost. In my

company, this generated fears: “Whoa, it’s expensive!” No, it isn’t—but the

cost is known, visible. In an on-premises environment, it’s very hard to

know the real cost per service, especially the human cost or the cost of

mutualized resources (network, storage, hosting, etc.).

When you choose a technical solution, it’s important to take into account all

the pieces of the project—and first of all, your human resources. Google

Cloud Functions, AWS Lambda, or other FaaS solutions may seem cheaper

because your use case fits them well. But is your team able to develop func‐

tions in the available languages and within the existing limitations?

The scalability and simplicity of these serverless solutions makes them popu‐

lar, and companies have built entire new stacks on top of them. Some

projects have thousands of functions, and it’s hard for a newcomer to under‐

stand the impact and the role of each one.

For a lot of teams that move to the cloud, splitting their monolith applica‐

tions into microservices is a real challenge in terms of design, documenta‐

tion, and organization. If you consider a simple microservice with four

HTTP verbs (GET, POST, PUT, DELETE), FaaS architecture splits it into

four parts. Functions are simple, but hard to consolidate and test, and it’s

difficult to keep consistency among them. Code factorization and reutiliza‐

tion also can be a challenge, and the tests are often redundant.

In addition, the current limitations, like the difficulties in using private libra‐

ries when deploying or loading third-party binaries can be a real challenge

when you start a FaaS project. Sometimes you have to reinvent the wheel to

cope with the existing constraints.

Collective Wisdom from the Experts 211

Scrum Master and Lead Developer at Veolia

Do you really know the cost of your FaaS choice? Here are some of the

human considerations:

• What is the impact of valuable/senior employees resigning because they

are not comfortable with the new stack?

• What is your training session budget?

• What is the impact of having no productivity during the training

session?

• How do you manage the lack of code quality, reliability, performance,

and productivity because of the new stack?

These costs, most of the time, add up to far more expense than the cost of

the cloud provider.

In addition to this human aspect, there are other potential costs. What will

be the cost of refactoring to achieve portability? What will be the cost of hav‐

ing x% more bugs because the software is difficult to test or the team lacks

experience in a new language?

Before you start using an online pricing calculator, be aware of your team‐

mates’ capabilities, wishes, and skills. Start to think about containers and

portability. Be smart before being a cost killer!

97 Things Every Cloud Engineer Should Know212

Cloud Engineering Is
About Culture, Not
Containers
Holly Cummins

What makes an application a good cloud application? The 12 factors are a

good start, but they address only a small part of the challenges of behaving

well in the cloud.

There’s a story in my team of a bank that asked for help to convert an aging

COBOL application to cloud native microservices. I imagine that the bank’s

goals were to become more modern, more agile, and better meet customer

needs—but its release board met only every six months. Another client

developed an architecture with 68 microservices, but was a bit uneasy about

how they’d interact. To ensure that changes in one microservice couldn’t

negatively impact other services, the client designed its CI/CD pipeline to

ensure that all 68 services could be deployed in a single atomic step. This

allowed them to run a lengthy user acceptance testing (UAT) exercise before

doing any releases.

There’s nothing wrong with doing releases this way, and for many years, this

kind of release cadence was the norm in our industry. If the 68 microservices

were distributed but not decoupled (an easy trap to fall into), releasing them

in a block and carefully testing them as a unit might have been a sensible

precaution. However, this pattern negates many of the benefits of the cloud.

Let’s step back and consider the (considerable) advantages of the cloud. The

cloud is a cost-effective alternative to hosting applications on premises,

mostly because of its elasticity. Deployments can be dynamically scaled up or

down in response to demand, and the business pays for only the computa‐

tional resources that are being used. The most exciting aspect of cloud com‐

puting, though, is the speed that it enables. Deploying to the cloud is so easy

(at a technical level) that an application can be updated hundreds of times a

day. This allows a business to respond to new opportunities at a lightning

Collective Wisdom from the Experts 213

Development Lead, IBM Garage

pace. Innovations can be tested in the field instead of on paper, and defects

can be fixed within minutes.

The engine that drives the cloud’s speed is the continuous integration and

continuous deployment system. This is usually shortened to CI/CD, and it’s

easy to forget that the C stands for continuous. Continuous isn’t something

you can buy; it’s something you do. Sharing work continuously is challeng‐

ing. A team will need a strong culture of automated testing and the discipline

to start all feature development with the invisible parts, rather than the more

exciting visible parts. Whereas visible parts do need to be coded before

dependencies are fully ready, they need to be made invisible with feature

flags. How continuous is continuous enough? For me, doing commits every

10 to 20 minutes and pushing every few commits is a good target. A team

that integrates developer work less than once a day can’t be considered to be

practicing continuous integration, no matter how many fancy pipelines it

has in place.

If integration is hard, continuous deployment is even harder. Achieving a

high release cadence requires technical skill and a hospitable culture. If fail‐

ure is harshly punished, a team will feel compelled to invest in lots of testing

and validation before doing a release. That makes releases too expensive to

do often. Even in teams with a cultural safety net, releasing regularly requires

nearly 100% automation and sophisticated rollback or roll-forward

mechanisms.

97 Things Every Cloud Engineer Should Know214

The Importance of
Keeping Working
Systems Working
Jan Urbański

There’s a classic phrase in the car enthusiast world: “While I’m there.” Let’s

say you want to change your engine. You go through a lot of effort to discon‐

nect all the externals and extract it from the chassis, and when faced with an

empty engine bay, you suddenly say, “While I’m there, why not upgrade the

radiator as well? And the turbocharger?” You end up with a project that

takes twice as long, costs three times as much, and is leaking fluid from that

ill-fitting radiator that looked so great in the catalog.

A cloud migration project is a cross-cutting undertaking, often involving

touching lots of components that have previously been running smoothly for

years. Everything is different in the cloud, even if vendors try their best to

provide an illusion of seamlessness. Migrating means challenging all the

assumptions your software makes about resource availability, network laten‐

cies, and performance characteristics of the underlying hardware. It’s already

a tough problem, and any extra changes you introduce to the system carry

additional risk of derailing the entire effort.

The code you’re migrating might be cumbersome to work with. It might be

too tightly coupled, and it might be hard to configure. But it has one impor‐

tant characteristic: it’s working. It is providing business value and has been

written and maintained for a certain purpose. There are many reasons to

decide on a cloud migration. These include reducing overall cost, making

operations more flexible, dealing with seasonal load, or reducing the up-

front investment required for growth. Regardless of your reasons, if the

existing system has the desirable quality of not being broken, you should

resist the urge to tinker with it as you move its components into the cloud.

Collective Wisdom from the Experts 215

Principal Software Engineer at New Relic

Obviously, there are no absolutes. Some systems are architected in a way that

makes it impossible to meet the goals of your migration project. However, to

increase the chances of a successful migration, you need to take a long, hard

look at any change you’re introducing. Is making the change strictly required

to meet your migration goals, or are you doing it “while you’re there”?

Twenty years ago, Joel Spolsky wrote the classic blog post “Things You

Should Never Do, Part I.” He talks about how rewriting code from scratch is

the single biggest mistake a developer can make. I believe the same principle

applies to rewriting services from scratch. Most of the time (remember, no

absolutes!), doing a lift-and-shift will lead to a better outcome than trying to

take advantage of the move to refactor or rewrite existing code. Sometimes

the initial migration won’t even fully bring about the cost or operational

benefits you are looking for. Instead, it will be a stepping-stone to further

rearchitecting to better leverage the cloud environment. This can be done

more calmly if the system is already up and running in the cloud.

It’s easy to give in to the siren call of redoing everything, when you’re already

changing so many things. But a cloud migration is a big job, so if possible,

avoid making it any harder on yourself. The easiest way to end up with a

working system is to keep it working, not to make it work.

97 Things Every Cloud Engineer Should Know216

Effectively Navigating
Organizational Politics
Joshua Zimmerman

Where there are people, there are politics. Despite the negative views that

many engineers have of office politics, they play an important role in our

organizations. Put simply, politics is the way humans make collective deci‐

sions. Pain from organizational politics is a result of broken processes. The

ever-increasing complexity of building and running software in the cloud

makes understanding and navigating these processes an essential skill for

shaping our socio-technical systems.

Before engaging in organizational politics, you need to identify the political

structures in your organization. When you see that a decision has been

made, ask yourself the following questions: Who was (or was not) involved

in making the decision? Who does this decision impact? What did that pro‐

cess look like? Are the decision makers perceived as having the authority to

make this decision? Who is accountable for the impact of this decision? The

patterns that emerge from the answers to these questions provide the begin‐

nings of a map of political structures. You’ll even find patterns across organi‐

zations. For example, flatter organizational structures often produce more

complex political structures as authority is obscured by the lack of structural

definition, while members of more hierarchical organizations may have less

agency to change things outside their teams.

Once you understand how decisions are made, you can influence the

decision-making processes. All decisions are contextual. They’re made by

people with specific knowledge and under specific constraints over a given

period of time. Healthy collective decision making ensures that the people

who have the most context and the people most impacted are able to influ‐

ence a decision. Let’s look at a few ways we can do this.

Collective Wisdom from the Experts 217

Senior Platform Operations Engineer at Sportsengine Inc.

Delegation

We are used to hearing about delegating work, but we can also delegate a

decision. This is useful in a cloud environment in which one team may have

multiple options to implement something that will impact another team. For

example, an operations engineer instrumenting a legacy application for the

first time can delegate the decision of what library to use to the development

team. This decision will impact the developers throughout the application’s

life cycle, even though the operations team may implement it initially. To be

successful, delegation requires the following:

Options

Give people options that you are comfortable with them choosing.

Impact

People need to actually care about the decision you are delegating.

Context

You cannot delegate to someone who lacks the context to make a

decision.

Committees

Committees can be overly bureaucratic and slow, and may not have the

power to implement their decisions. But we keep trying to reimplement

them (even when we rename them to something like “guilds”), because com‐

mittees are a useful tool when cross-organizational context is needed for

decision making or when cross-organizational buy-in is needed for a deci‐

sion to be successfully implemented. To be successful, a committee needs the

following:

Authority

A committee without authority delegated to it cannot make the organi‐

zation move on its decisions.

Structure

Committee members need to have a shared understanding of how they

make decisions.

Representation

Anyone impacted by a decision needs to be involved with making it. By

the same token, committee members need to represent the committee

and its decisions back to their own teams.

97 Things Every Cloud Engineer Should Know218

Soft Decisions

You can make a preliminary decision in a small group and then request feed‐

back from a larger body of stakeholders. This allows you to modify a deci‐

sion based on the needs of those it will impact. Requests for comments

(RFCs) are good examples of this. This approach requires you to provide as

much context around your decision-making process as possible to alleviate

potential concerns. Be willing to accept feedback; people will stop giving you

feedback if they feel you are not listening.

Collective decision making is hard. When done well, it requires us to balance

the needs of our organizations and all of the humans who are a part of them.

Cloud engineers need to understand these human aspects when making

decisions to reduce political friction from the decisions they make every day.

Collective Wisdom from the Experts 219

1 A version of this article was originally published at LinkedIn.

The Cloud Is Not About
the Cloud
Ken Corless

When our clients say they want the cloud, I don’t believe they really want the

cloud.1 What they really want is a whole new way of delivering technology

and IT to power their business. In other words, their technology organiza‐

tions want APIs and DevOps and Agile and loosely coupled systems. They

want continuous deployment and autonomics and machine learning and

mobile. They want to be Netflix or Instagram or Uber. They want to have

two junior employees talk about an idea at lunch and work through the

nights and weekends to deploy a new capability that delivers a 5% bump in

sales by Monday.

Most of the CIOs of these companies understand that they must fundamen‐

tally change the way they run their IT function if they are to fulfill the aspira‐

tion that “every company is a technology company.” However, while the

cloud can be a catalyst toward breaking the inertia of the old way of running

IT, the journey is strewn with challenges.

Many Fortune 500 companies began this journey to the cloud over 10 years

ago. They called it private cloud because they were concerned about security,

regulations, costs, retooling, and a whole host of other things, so they jum‐

ped on the private cloud bandwagon. The least successful of these companies

simply slapped the private cloud label on what they were already doing. Oth‐

ers built out new datacenters, perhaps on hyper-converged infrastructure,

and virtualized their servers, storage, and networks. Today, however, few are

happy with their private cloud outcomes. Many of the more adept compa‐

nies achieved some real benefits in hardware utilization and costs but others

did less well.

97 Things Every Cloud Engineer Should Know220

Executive VP for Technology, Offerings & Partners,

DXC Technology

Why did these companies not achieve their aspirations? Well, as in previous

waves of technology change, they failed to change enough. Rarely will com‐

panies succeed with transformational objectives by moving only a single

piece of the complex machine that is IT. Moving off the mainframe didn’t do

it. Nor did leveraging a cheaper global labor pool. Taking your old “pile of

stuff” and pulling one lever of change simply results in a slightly updated pile

of stuff.

So what should a company do that is seeking to look, act, and, most impor‐

tantly, deliver outcomes significantly better? These companies need to real‐

ize that it is time to undertake a true, full IT transformation.

Companies have used the term IT transformation liberally in the past decade

or so, even when they have only outsourced or labor-arbitraged their old pile

of stuff. To fully transform IT, companies need to holistically look at their IT

function without fear of breaking some glass.

You’re doing DevOps? How many fewer infrastructure support people do

you have?

Love SaaS? Why is your new SaaS team the same size as the old team that

supported the legacy app?

You’ve bought into the whole API thing? Do any external parties contribute

to your revenue by utilizing your APIs? Do your frontend developers access

the backend of their application through the same APIs that other teams are

supposed to use?

Stop. Stop now. Rethink your organization, including business interlock.

(While you’re there, stop talking about the business and IT as two separate

entities.) Reengineer your IT business processes (the business of IT). You

must take all of these wonderful, thought-out, intelligent new things that

smart technology companies are doing and do them together.

Be bold. Be brave. Risk some failure. Disrupt yourself. Oh, yeah—and move

your stuff to the cloud!

Collective Wisdom from the Experts 221

1 Excerpt from Accelerating Cloud Adoption: Optimizing the Enterprise for Speed and Agility

(O’Reilly, 2021).

The Cloud Is Bigger than
IT: Enterprise-Wide
Training Strategies
Mike Kavis

Many people think that cloud computing is an IT project, but its arc of influ‐

ence and organizational impact reach far beyond the IT department to every

part of the company.1 It is critical to be aware of these impacts. If you aren’t,

you risk running into roadblocks that can cause major setbacks in cloud

adoption.

Companies often overlook recruiting, retaining, and training staff both

inside and outside IT when planning and budgeting for a large cloud initia‐

tive. The enterprise leaders driving the cloud transformation need to work

closely with their human capital team to design and build the right talent

strategy. Here are some things to consider.

Gartner journalist Meghan Rimol estimates that “insufficient cloud IaaS

skills will delay half of enterprise IT organizations’ migration to the cloud by

two years or more.” She notes that many cloud migration strategies are

geared toward lift-and-shift as opposed to modernization or refactoring, an

approach that results in less development of cloud native skills among staff.

Include someone from human capital on your cloud leadership team from

day one. Make them part of the journey. They can help build out training,

retainment, and recruiting plans iteratively, and participating will keep them

in sync with the progress of the overall cloud transformation. This is

important because when the hiring requirements start to scale up, the

recruiting team needs to be ready.

97 Things Every Cloud Engineer Should Know222

Managing Director of Technology/Cloud Practice,

Deloitte Consulting

Your human capital team should be very good at building recruiting strate‐

gies, but needs your help. Provide team members with training on cloud

computing so they know, at minimum, the value proposition of the cloud for

the company and have a sense of what all the terms mean. Second, they’ll

need your help defining all the roles and job descriptions required for the

cloud. Third, they’ll need your ideas on where to find talent. Are there con‐

ferences or local events that they should be attending? What specific sets of

hard and soft skills are you looking for? How much work can be done

remotely, and how much will have to be on site?

One thing that companies leading successful cloud adoption initiatives have

in common is that they make a significant financial commitment to training

their employees inside and outside IT. The cloud service providers offer

training programs that teach employees how to build and run workloads in

the cloud, but what they don’t teach is how cloud is done within your organi‐

zation. Every organization has its own processes, policies, and controls, and

its own cloud strategy, all of which play an important role in cloud technol‐

ogy decisions.

The most successful companies create enterprise-wide internal training pro‐

grams, or tech colleges, that combine online training from vendors with sig‐

nificant homegrown training content, fully staffed with instructors and

content creators. They offer these training programs not just to engineering

but to the entire company.

Internal training programs should have two major focus areas. The first is

upskilling employees for the cloud; the second is constantly communicating

the company’s cloud vision, strategy, and cultural messaging. These are criti‐

cal. Organizational change guru John Kotter calls this the WIIFM: “What’s

in it for me?” If people don’t know their WIIFM, it can be challenging to get

them to buy into the vision and thus to the organizational changes needed.

A big part of cloud adoption is communicating the overall vision. Why

should each employee care about the cloud transition? The more cloud-

savvy your non-IT people are, the more effective they’ll be when working

with their IT counterparts.

Collective Wisdom from the Experts 223

Systems Thinking and the
Support Pager
Theresa Neate

A developer and I once discussed quite “enthusiastically” the consequences

of the decisions we were making as a delivery team. The API we developed

was to specification. It was beautifully documented. We had tested it thor‐

oughly and were proud of it. By all appearances, our job was done. But we

still didn’t know how the downstream consumers of the API would receive

it.

When I asked about that, the developer responded, “We don’t care about

that.” He felt that it was up to them to adjust their consuming service based

on what we gave them, seeing as they had been clearly told what we were

delivering to them and we had “done it right.” What ensued was our impas‐

sioned “discussion” about why that should be our business. We agreed to

disagree.

There Are Always Consequences

Everything we do has consequences, good or bad. That is because everything

—while it sometimes may appear independent—is always interdependent.

Interdependence is fundamental to systems. Everything is a system. Our lives

are systems. Everything is also a component of a bigger system.

In that scenario, as it turns out, we had not known about one of the mobile

application team’s requirements, and that team’s whole application failed

upon receipt of our API. The result was several weeks of API rewriting and

retesting. (This, of course, is waste, a topic for an essay on Lean crucial to

successful DevOps—but more about that on another day.)

The consequences of poor software design, development, and delivery are

always felt, whether it be by the operations folks, or the customers, or the

shareholders, or whoever. Likewise, the consequences of teams that work

together, maybe even on the same floor, but do not consider the effects of

their actions on others will be felt.

97 Things Every Cloud Engineer Should Know224

QA Practice Lead at Slalom Build Australia

Systems Thinking in Teams

Teams do not work in isolation; they are a part of a system. Nowadays, we

use terms like DevOps and Agile to describe this culture. (Note that culture is

how we deal with work, not how many beanbags we have.)

While tools help us achieve these aims, it is systems thinking and the culture

that actually get us there. When we enable and educate our teams to be part

of a system, team members consider not only the individual components of

this system but also the system as a whole—and the consequences of their

actions.

Systems Thinking in Application Support

The person who wears the support pager is the person who has the best view

of the system’s bad behavior and the system’s supportability. This person

knows all too well the consequences of the actions taken by those earlier in

the life cycle.

Traditionally, this person is operations personnel. However, in mature

DevOps practices, other personnel in the team carry the pager too. At my

current employer, all developers and some QAs do too. We do this because

we espouse ownership (and considering consequences) of the work our

teams do.

In my case, I am not a systems engineer, and when I am personally unable to

resolve the pager alerts, I seek the assistance of someone who can. They are

usually very willing to do so because they benefit directly from educating the

rest of us.

It All Dovetails

So much can be said and written about the dovetailing of systems thinking,

Lean, Agile, and DevOps. But for now, I will leave you with this summary

and leave the door open to further discussions.

Supporting a system and empowering team members to support their system

aids understanding of what causes issues, provides insight into regularity of

recurring issues, and improves empathy and ownership—and quite right‐

fully sets everyone on the path of thinking in terms of consequences, and

thus systems thinking.

Collective Wisdom from the Experts 225

Curating a DevOps
Culture and Experience
Tiffany Jachja

DevOps came from the idea that by working together, developers and opera‐

tions teams could drive the delivery of business value through software. I

came to understand DevOps as a combination of people, process, and

technology.

Admittedly, it took me quite some time to learn how these three areas played

into each other. So I want to share three lessons about adopting DevOps

practices and culture for developers, product owners, and stakeholders

within organizations.

Define Your Target Outcomes

I’ve come to realize that things can go very wrong in any endeavors where

the outcomes are not clearly defined and prioritized. Output and artifacts are

significant; we produce them in design thinking sessions, feature building,

and discovery sessions. However, these outputs and artifacts can quickly

depreciate when teams misunderstand the goals and purpose.

The critical point here is not to confuse outcomes with outputs. You

shouldn’t run a design sprint to produce a backlog for your developers to

develop off of; this is an example of an output. An example of an outcome is

having your critical stakeholders, including your developers, understand the

problem space to begin developing the solution. If you’re running a session

or event and have artifacts and checkboxes to produce, that’s great; it ensures

someone has a role and responsibilities to fill during that time. These

responsibilities should be a separate agenda handled by that role.

When a team aligns with the same outcome, we get better value and results.

Accelerate by Nicole Forsgren et al. (IT Revolution Press, 2018) is an excel‐

lent book that talks about this within organizations adopting DevOps. Defin‐

ing target outcomes ensures that processes involving tech and people are

aligned with your business needs.

97 Things Every Cloud Engineer Should Know226

Tech Evangelist at Harness

Safe Environments

Safe environments are essential to maintaining the health of your organiza‐

tion. Employees can bring their best only when they feel empowered and

motivated. The key takeaway here is to provide a safe environment for every‐

one to contribute.

If you are maintaining a healthy team, excellent—you are probably meeting

your target outcomes, driving value across the organization or group regu‐

larly, and have lessons learned. Great feedback often causes a desire to fur‐

ther improve or experiment with current processes.

If you are struggling with delivering value and meeting your target out‐

comes, a few practices can help enable learning from your team, like retro‐

spectives. Dare to Lead by Brené Brown (Random House, 2018) is a personal

favorite of mine for grappling with conflicts and complexity within an orga‐

nization.

Regardless, we cannot predict chaos, so within execution cycles it’s often

necessary to pivot. Changing current outcomes and processes across your

organization can be difficult, especially concerning team morale and team

dynamics. Blame can also be associated with dissatisfaction tied to unmet

deliverables.

Some indicators of lowered team morale include feelings of frustration that

things aren’t working, pushback, and an increase in questions. Here are

some tips if you are experiencing mid-sprint or mid-execution pivots that

are hurting your team:

1. Ensure that the change aligns with a defined target outcome.

2. Constrain the change by time or ensure that the shift is time-bound

(especially if you are making changes mid-execution).

3. Explain the change to your team in the context of points 1 and 2.

Maintaining a safe environment will help grow a culture in which individu‐

als gain autonomy, allowing value to scale.

Architect Your Technology

Organizations see the need to adapt and innovate to stay competitive and

current in their markets. With the increasing adoption and emergence of

technology—there are 1,200 Cloud Native Computing Foundation (CNCF)

Collective Wisdom from the Experts 227

projects now, wow!—it’s crucial that team members across the organization

understand the technology landscape of your company.

Ensure that documentation is current and available regarding the architec‐

ture of your application. If you do not have any architecture diagrams, take

the time to work with your team to produce, at a minimum, a big-picture

diagram that spans your environments. Present this to your organization

and ensure that everyone understands how all the tools and frameworks

interact. With reference diagrams, your developers can understand the soft‐

ware application and point out any missing details concerning current work

in progress.

Getting the big picture also allows you to better determine which processes

and features will require or benefit from the adoption of technologies.

Understanding how your tools and technologies benefit your software devel‐

opment life cycle accelerates your software delivery.

97 Things Every Cloud Engineer Should Know228

PART XII

Personal and
Professional
Development

Read the Documentation
—Then Reread It
Jennine Townsend

Moving to the cloud can really reduce the number of infrastructure vendors

you’ll need to keep an eye on. But you can’t slack off on reading documenta‐

tion, since understanding your cloud vendor is as important as understand‐

ing all those others used to be, combined, and if you don’t know about a

feature, it might as well not exist.

But even if you read the documentation, another challenge remains: cloud

providers are constantly working to improve their offerings. In many cases,

the improvements will appear as new services or splashy new features, and

you’ll find out about them in the normal course of keeping up. Follow all the

vendor’s tech blogs! But often the improvements are to a service you aren’t

now using, or you just don’t happen to notice the announcement, or maybe

it never gets officially announced. How can you know to use a feature you

don’t know exists? Even the infrastructure you’re already using may be

changing right this minute! The documentation you read last month might

already be out of date.

It’s helpful to have a strategy. Brain upgrades require as much intentional

planning as any others.

DevOps practitioners already ought to have a good understanding of infra‐

structure costs and the contribution of various technologies and projects to

the overall costs. Always keep up with the documentation around the infra‐

structure that’s costing the most, or that is bottlenecking the highest-priority

projects. There’s a good chance that this isn’t the trendy new tech, but caus‐

ing random sudden cost savings can be pretty rewarding too.

In addition, the cloud by its more on-demand nature adds emphasis to cal‐

endar considerations: for example, reservations or licenses may apply to

some resources, so with advance planning, you can take advantage of expira‐

tions to switch to cheaper and better choices. That advance planning

requires understanding updated business needs and how the related

97 Things Every Cloud Engineer Should Know230

System Administrator

offerings and pricing have changed since the reservation was purchased, so

reviewing upcoming reservation expirations is an excellent way to choose

documentation to focus on.

What is causing too much toil and trouble? A big advantage of the cloud is

that you don’t have to live out the lifetime of a bad technology, but wholesale

replacement can be a project too large or risky to ever complete. If some part

of the stack isn’t working well, a simple tweak may help. Even, and maybe

especially, if you don’t have specific words for your dissatisfaction, it can

really pay off to reread the documentation; you may find that you’re suffer‐

ing with something that already has a fix available! As with sudden cost

decreases, a sudden improvement in usability or reliability or performance

can be really welcome, especially if it carries little or no burden of code

changes.

Then there are the pieces of infrastructure that just feel old. Here’s where

you get to play with the shiny new thing—but not until after you’ve reread

the docs for the old thing! At a minimum, it’s best to have a solid and upda‐

ted understanding of what you’re replacing. This is far easier if your stack is

designed to be as modular as possible, so that you can swap out the queue

layer, say, without much disruption.

The cloud brings fundamentally different trade-offs to many of the careful

balancing acts that come with developing and operating an infrastructure.

The flexibility of ephemeral infrastructure gives us the ability to rapidly

improve the platforms that support our projects, but we can take advantage

only of flexibility that we know we have. Reading—and then rereading—the

documentation is important for making wise decisions about where to most

effectively apply time and effort, but keeping up is a big project in itself.

Defining a strategy for how to keep up can make doing so more manageable

and useful.

Read the documentation. Then reread it!

Collective Wisdom from the Experts 231

Stay Curious
Laziz Turakulov

As a cloud engineer, you should know a lot. And the more you learn, the

more you realize that the learning has no ending. It becomes a lifelong jour‐

ney, with new technologies, platforms, and solutions released almost daily!

That’s why it’s important to make the learning process as rewarding as possi‐

ble, so that you can enjoy every byte of information building another syn‐

apse in your brain. And the secret ingredient for this is curiosity.

Look at babies for inspiration. They are full of natural curiosity, trying to

touch and taste almost anything they can reach. Unfortunately, as adults, we

get busy with various priorities at work and home, and lose our natural

sparks of curiosity.

However, they are not completely lost! As a cloud engineer, you can do the

following exercises to reignite that joy of trying something new and boost

your career in the field:

Switch off the bias.

You may be a hardcore (and hardcoded!) fan of a certain cloud plat‐

form, hate or love open source, and believe that your favorite program‐

ming language beats them all. It may be true. Or maybe not. So don’t

limit yourself to only what you know or prefer, but instead allocate regu‐

lar slots in your busy diary to explore competitor products. You may not

like them at all, but at least at the next meeting you’ll be able to explain

(without getting too emotional) the differences between the options and

how the client would benefit from your recommendation.

Learn about business processes.

Gone is the time when you could lock yourself down in the server room.

As a cloud engineer, you are on the front line and should speak “busi‐

ness” language, understanding what people in the marketing or opera‐

tions departments do, what data business analysts dream of, and what

keeps your security team awake at night. The more you learn about

97 Things Every Cloud Engineer Should Know232

Digital Business Analyst at BAT

those processes, the better you can bridge client requirements with the

relevant cloud offerings.

Not everything is about technology.

Try to find a new hobby: music, art, foreign language, or sport. The link

may not be obvious, but it may help you look at some of your challenges

from a different angle, find common topics for small talk with collea‐

gues, establish new networks, and boost creativity in general.

Try something that looks impossible, stop to refocus and revise, and then try it

again.

Babies fall, but they get up again and again, eventually learning how to

walk. In your job, you may try a slightly different approach with every

new attempt. As one famous and wise man once said, “doing the same

thing over and over again, but expecting different results” is the defini‐

tion of something else. He probably was never a baby himself!

Teach others.

When you need to explain something to others who are not that familiar

with the subject, think about how to make the information simple and

digestible. No jargon, no condescension—you were not born a cloud

engineer yourself! Help others to understand it, and you will learn more

about the subject too (possibly making new friends along the way).

But most of all, enjoy what you do!

Collective Wisdom from the Experts 233

Empathy as Code
Nirmal Mehta

One of the many reasons for the rise in popularity of cloud computing and

DevOps is in response to the established ineffective tension between devel‐

opment and operations teams seen across most of the enterprise IT land‐

scape. The often dysfunctional pattern of a throw-it-over-the-fence approach

to responsibility created an environment in which any change was often met

with fear and resistance.

I hope to provide some context for all the technologies, tools, architectural

patterns, techniques, and other material you are absorbing in this book. I

also encourage you to utilize infrastructure as code as common ground

between developers and operators.

Empathy as Code

Many of the tools and techniques in this book are centered around writing

code that defines and implements various aspects of the infrastructure you

are working on; this is commonly known as infrastructure as code (IaC).

Whether they’re Terraform modules, Dockerfiles, Ansible playbooks, or

Kubernetes YAML/Helm charts, these pieces of code codify decisions that are

being made by cloud engineers to dictate what the infrastructure should be

to run the developers’ applications.

In addition to the benefits of automation, repeatability, and security that

these IaC elements provide you as a cloud engineer, they can also be used to

bridge the gap between operations teams and application developers. IaC

can be used to shift the throw-it-over-the-fence process into a shared respon‐

sibility process in which joint decisions on what the infrastructure should

look like are codified.

IaC then turns into a form of empathy as code, through which groups of

folks such as developers, security engineers, and cloud engineers can find

common ground, understand incentives and goals, test new designs, and

share responsibility for the system as a whole. As a cloud engineer evaluat‐

ing, designing, and implementing new technologies, I encourage you to take

97 Things Every Cloud Engineer Should Know234

Chief Technologist at Booz Allen Hamilton

a step back and find opportunities to use these technologies to break down

the organizational walls and foster understanding.

A Sampling of Decision-Making Techniques

Great! You’re now on board for DevOps, infrastructure/empathy as code,

and shared responsibility—but how do you go about making architecture

and technology decisions with a group?

Here is a sampling of decision-making and forecasting techniques to get you

started:

Design thinking

First described by Nobel Laureate Herbert Simon, this popular innova‐

tion process takes a user-centric approach: empathy for stakeholders/

users, gathering requirements by understanding the users’ needs and

problems and by utilizing your unique insights, out-of-the-box ideation,

prototyping the solution, and iterative testing with users. Design think‐

ing is useful at the beginning of a new project or when collaborating

with diverse groups on a solution to a larger problem.

Divergence/convergence

A lightweight framework for group brainstorming and “norming”

around a solution, this framework has two phases. In the divergence

phase, any solution can be proposed, and the group is encouraged to

constructively support all ideas. Then convergence begins: technical lead‐

ership drives consensus on a solution from the first-phase ideas.

Strong opinions loosely held

In this process developed by Paul Saffo, you let your intuition create a

strong opinion about a solution and then use self-awareness to gather

evidence to prove yourself wrong (a form of “self-steelmanning”). This

technique tends to work only if everyone is working in good faith.

Superforecasting

Developed by Philip Tetlock in Superforecasting (Crown, 2015), this

technique focuses on two things: phrasing opinions in a clear future-

verifiable way, and stating the probability that your opinion is correct.

These two steps can help open discussions between differing groups and

lead to consensus.

Collective Wisdom from the Experts 235

From Zero to Cloud
Engineer in Less Than a
Year
Rachel Sweeney

A year and a half before I wrote this article, I was an executive assistant with

zero years of IT experience and a degree in Chinese history. Despite that

promising pedigree, I managed to get offers in four out of five of the jobs I

interviewed for, and I now have the pleasure of working as a DevOps engi‐

neer, with tools and technology that have me excited to go to work every

day.

So, what’s the secret?

I achieved my dream by making the most of the resources that are readily

available to all of us with an internet connection. I joined several Slack chan‐

nels and Discord groups to talk to experts and pick their brains, I picked up

books and watched videos on YouTube and Linux Academy to develop the

skill sets I needed, and I went to meetups both in person and virtually to

learn more and network with locals to see what their day-to-day work looked

like.

When I began my journey, I didn’t really know what I wanted to do, so I

found a Linux Slack channel and said, “Hey everyone, I want to be a Linux

system administrator—where do I start?” I was amazed at the number of

responses I received. As I asked more and more questions, a path started to

unfold, with a number of skills I needed to get me to where I wanted to be.

Several months later, I found myself repeating these same questions. I

quickly learned I wanted to be a cloud engineer, and shortly thereafter I

accepted my first job as an assistant DevOps engineer. So many experts are

available to us through Slack and Discord who love sharing their depth of

knowledge; use this to your advantage! Ask them questions.

97 Things Every Cloud Engineer Should Know236

DevOps Engineer at the Pew Research Center

While talking with some of these experts, I found that the next thing I

needed to do since I was starting from zero was to obtain a few certifications.

Although there’s plenty of debate on whether certifications will be really

helpful for your next job or promotion, the knowledge gained while studying

for them is invaluable. I set aggressive timelines for myself, allowing three

months to study the material and attempt the exam. This was an extremely

motivating factor to keep studying and push myself to the next level. In most

of the interviews I’ve had, when I was asked how to solve a particular prob‐

lem, I was able to draw directly from the material I’d learned to answer the

question and secure a job offer. Getting a certain score on a certification

exam isn’t nearly as important as knowing the material. Even if you don’t

want to or can’t afford to get a certification, just looking at the study material

is worthwhile. Quite often, the cloud provider or company offering the cer‐

tification is preparing a silver platter piled high with all of the important

things they feel you should know.

The last resource that I can’t recommend enough is attending local or virtual

meetups in your area. Cloud engineering often involves a particular problem

that needs a solution, given the tools we have available. Meetups usually

revolve around problem solving, whether it’s someone sharing a challenge

and how they solved it, or learning about a tool and the challenges it aims to

solve. Meetups are also especially useful if you’re job seeking. The majority

of my job interviews arose from word-of-mouth connections and talking

with others at these meetups. A good icebreaker I would often use at meet‐

ups was asking people, “What’s your favorite DevOps tool and why?” Don’t

forget to ask open-ended follow-up questions!

This book has presented an amazing array of skills, ideas, and tools that can

help you on your journey, whether you’re starting from scratch or are estab‐

lished in your career. If you apply these resources to whatever you’re learn‐

ing, I guarantee that you will end up with a deeper and better understanding

of your topic.

Collective Wisdom from the Experts 237

Contributors

Adarsh Shah

Adarsh Shah is an engineering leader, coach, public speaker,

hands-on architect, and change agent. He is also an organizer

for the devopsdays NYC conference and DevOps NYC

meetup. Adarsh has a keen interest in building systems that

add business value. He is an independent consultant passion‐

ate about helping clients with software architecture/development, leadership,

and DevOps and cloud needs by looking at both technical and nontechnical

aspects. These days, he is excited about working with machine learning and

cloud native technologies. Find out more about Adarsh at shahadarsh.com

and on Twitter at @shahadarsh.

Principles, Patterns, and Practices for Effective Infrastructure as Code, page

180

Alessandro Diaferia

Alessandro Diaferia is a software products technologist and a

senior software engineer and lead engineer at Utmost, in

Dublin, Ireland. He’s always keen to understand how new

technologies enable teams to be more effective at delivering

value. Alessandro favors approaches that invest in metrics

and data-driven decision making, and teams that don’t become enamored

with their assumptions, but rather are agile and ready to pivot as the condi‐

tions of the environment change around them. He believes cloud technolo‐

gies to be the key that helps organizations experiment and quickly

understand the best value for their users and believes in adopting them to

reach the highest standards of agility. Alessandro spends part of his free time

reading about technologies and practices and blogging about his experiences.

He cohosts a podcast for Italian-speaking software engineers called Spaghet‐

tiCode. You can find him on Twitter at @alediaferia.

The Cloud Doesn’t Care if It Works on Your Machine, page 138

Alex Nauda

Alex Nauda is CTO at Nobl9 and helps organizations

improve the reliability and performance of their cloud native

applications. He started his career in the performance man‐

agement of data warehousing in the days of magnetic storage

and backplanes. Since the days of the web, he has focused on

product development in media and the public cloud. Alex lives in Boston,

where he grows vegetables under LEDs and teaches juggling at a nonprofit

community circus school. You can find Alex on Twitter at @Alexnauda.

The Basics of Service-Level Objectives, page 107

Annie Hedgpeth

Annie Hedgpeth is a senior cloud automation engineer at

10th Magnitude, where she focuses on accelerating Azure

cloud adoption through automation and DevOps. Through

configuration management, provisioning with infrastructure

as code, integration testing and compliance automation

through InSpec, and CI/CD, Annie’s aim is always to make the right thing to

do the easy thing to do. Simplifying CI/CD and creating a seamless process is

at the heart of what she does. You can find out more about what Annie does

on her blog at anniehedgie.com, and you can follow her on Twitter at

@anniehedgie.

Red, Green, Refactor for Infrastructure, page 183

Asha Kalburgi

Asha Kalburgi is a database architect with an interest in

DevOps and CI/CD, especially for databases. She has over 16

years of experience in database technology and recently

became fascinated with all things cloud. Asha is certified as

an AWS Solution Architect. Currently, she is working on

migration of on-premises Oracle databases into the AWS cloud, especially

Aurora PostgreSQL RDBMSs. Asha has a passion for DevOps and has imple‐

mented the CI/CD pipeline for database code and worked with CI/CD tools

like Jenkins, Git, and Liquibase. She believes “change is the only constant” in

today’s technology fabric.

So You Want to Migrate Oracle Database into AWS Cloud?, page 193

Banjo Obayomi

Banjo Obayomi is a senior research engineer at Two Six Labs,

where he develops platform solutions for productizing vari‐

ous research-based projects. Banjo is passionate about opera‐

tionalizing data, aka DataOps, and has started a podcast and

meetup around data. Banjo received his BS in computer sci‐

ence from the University of Maryland, College Park, in 2011 and his MS in

computer science from Loyola University in Maryland in 2015.

DataOps: DevOps for Data Management, page 196

Brendan O’Leary

Brendan O’Leary is a senior developer evangelist at GitLab,

the first single application for the DevSecOps life cycle. He

has a passion for software development and iterating on pro‐

cesses just as quickly as we iterate on code. Working with

customers to deliver value is what drives his passion for

DevOps and smooth CI/CD implementation. Brendan has worked with a

wide range of customers—from the nation’s top healthcare institutions to

environmental services companies to the US Department of Defense. Out‐

side of work, you’ll find Brendan with one to four kids hanging off him at

any given time, or occasionally finding a moment alone to build something

in his workshop. You can reach Brendan on Twitter at @olearycrew.

Three Keys to Making the Right Multicloud Decisions, page 6

Brian Singer

Brian Singer is a product-focused entrepreneur with a pas‐

sion for enterprise software, cloud computing, and reliability

engineering. He is cofounder and chief product officer of

Nobl9, a Battery Ventures–backed company building a plat‐

form to optimize software reliability. His previous company,

Orbitera, was acquired by Google; he adapted the SaaS product to follow

Google’s best practices for production and reliability. Prior to Orbitera,

Brian worked for BMC and Novell. Brian holds a BS in computer engineer‐

ing from Brown University and an MBA from MIT. He resides in the Boston

area, where he is perfecting his golf swing.

The Basics of Service-Level Objectives, page 107

Brittany Woods

Brittany Woods is an automator of things who is based in

central Missouri. During her career in technical roles in both

the financial and automotive sectors, Brittany has been a

major advocate for utilizing DevOps and automation to

enhance velocity, increase innovation, and drive business

value. She enjoys work that spans not only across DevOps and automation

spaces but also into systems architecture and cloud solutions and adoption.

Additionally, Brittany enjoys teaching others, sharing knowledge through

conference speaking, and leading teams. She can be found on Twitter

(@bnwoods2008) or on her website (brittanynwoods.com).

Silos by Any Other Name, page 209

Chris Hickman

Chris Hickman is an entrepreneur, technical leader, and

accomplished developer. He has founded two companies,

one with $24 million in venture capital, the other bootstrap‐

ped with an SBA loan. Now at Kelsus, he leads teams build‐

ing world-class software in the cloud using AWS, Docker,

and the latest, most productive technology stacks. Chris also cohosts Moby‐

cast, a weekly podcast that dives deep on topics related to building cloud

native software. When not designing distributed systems or deploying code

to the cloud, Chris enjoys spending time with his family, cycling, and end‐

lessly throwing a tennis ball to his black Labrador, Gus.

The Future of Containers: What’s Next?, page 20

Chris Proto

Chris Proto is a long-time technologist with a diverse techni‐

cal skill set in security, application development, and opera‐

tions. After graduating as a computer engineer from

Villanova University he moved to Denver, where he worked

as a developer for companies of all sizes until joining the

engineering team at Craftsy, a successful consumer media startup. After sup‐

porting years of scaling, continuous growth, and an eventual acquisition by

NBCUniversal, Chris left his position as head of DevOps to follow his pas‐

sion and start his own company focused on promoting cloud engineering

best practices. Currently, Chris resides with his wife in Charlottesville, VA,

where he owns and operates DevOps Gorilla, a professional services provider

for companies running cloud native workloads. Follow Chris on Twitter

(@cproto) or online at https://www.devopsgorilla.com.

KISS It, page 140

Chris Short

Chris Short has been a proponent of open source solutions

throughout his over two decades in various IT disciplines

including systems, security, networks, and DevOps engineer‐

ing and advocacy across the public and private sectors. He

currently works at Red Hat. Chris is a disabled US Air Force

veteran living with his wife and son in Greater Metro Detroit. He writes

about DevOps and other topics at chrisshort.net and runs the DevOps, cloud

native, and open source–focused newsletter DevOps’ish.

Security at Cloud Native Speed, page 69

Dan Moore

Dan Moore has over 20 years of experience building soft‐

ware. He’s been an employee, a contractor, an AWS course

instructor, an author, a community member, a meetup

organizer, an engineering manager, and a CTO. Dan cur‐

rently leads developer advocacy at FusionAuth, a company

building software to handle authentication, authorization, and user manage‐

ment for any app. When not in front of the keyboard, you can find him in

the wilderness or the garden. Dan resides in Boulder, CO. You can find him

on Twitter at @mooreds.

Use Managed Services—Please, page 8

When in Doubt, Test It Out, page 94

Dave Stanke

Dave Stanke is a developer advocate for Google Cloud Plat‐

form, aligned to the DevOps community. He loves talking

with practitioners: listening to stories, telling stories, and

sharing a healthy cry. Before moving to Google, he was the

CTO at OvationTix/TheaterMania, a tech startup in the per‐

forming arts industry, where he specialized in feeding memory to Java

servers. He chose on purpose to live in New Jersey, where he enjoys baking,

indie rock, and fatherhood.

People Will Expect Things—Help Them Expect Right, page 59

David Murray

Proudly Irish with 20 years of experience in customer-facing

technology roles, David Murray knows the tech may change

but the customers never do! David is a networking engineer

at heart who is working on cloud solutions at the moment.

He loves nothing more than trying to tackle the business or

technical problems that are so big that most people shy away from them. In

his spare time…who are we kidding, he has two young boys and zero spare

time. His side hustle is that he is the head coach for the LA Cougars Gaelic

Football team.

Even in the Cloud, the Network Is the Foundation, page 202

Dawn Parzych

Dawn Parzych (@dparzych) is a developer advocate at

LaunchDarkly, where she uses her storytelling prowess to

write and speak about the intersection of technology and psy‐

chology. She enjoys helping people be more successful at

work and at life. She makes technical information accessible,

avoiding buzzwords and jargon whenever possible. Her articles have

appeared in numerous technical publications. She serves as an organizer for

Write/Speak/Code, the Seattle DevOps Meetup, and is on the organizing

committee for devopsdays Seattle. In her free time, she enjoys exploring the

Pacific Northwest with her family and dog.

Maintaining Service Levels with Feature Flags, page 142

Deepak Ramchandani Vensi

Deepak Ramchandani Vensi, a transformation director at

Contino, specializes in working with large regulated enterpri‐

ses to accelerate their journey toward digital transformation

and multicloud adoption. He works with technology execu‐

tives to share strategies and approaches on pivoting toward a

digital-first business and operating model. Deepak is known for helping

organizations adopt modern operational and engineering practices such as

SRE, FinOps, GitOps, and DevSecOps; developing cloud-native products;

and building sustainable in-house digital capabilities for long-term adoption

across Azure, AWS, and GCP. Over the past few years, Deepak has worked

with leading brands and institutions to overcome their internal barriers to

change by moving toward modern ways of working, focusing relentlessly on

the developer experience and adopting the public cloud, while respecting the

boundaries set by the respective regulatory bodies. This includes banking

and financial services, insurance, retail, business process outsourcing,

energy, and utilities.

FinOps: How Cloud Finance Management Can Save Your Cloud Program

from Extinction, page 165

Delali Dzirasa

Delali Dzirasa is the CEO and founder of Fearless, a full-stack

digital services firm in Baltimore, MD, with a mission to cre‐

ate software with a soul—tools that empower communities

and make a difference. In addition to shooting for the stars

when it comes to ideas and living the purple cow principle,

Delali has set the vision for Fearless for more than 10 years. Delali has a BS

in computer engineering from the University of Maryland, Baltimore

County (UMBC), and has over 15 years of experience leading Agile software

teams and programs. He strives to make a difference in technology and in

his surrounding community.

Cloud for Good Should Be Your Next Project, page 10

Derek Martin

Derek Martin is an accomplished Microsoft systems devel‐

oper and integrator and a principal program manager for the

Azure Patterns and Practices Team. Derek has 15 years of

experience in developing and deploying public and private

clouds and integrating line-of-business applications with

modern technology. His extensive experience in cloud technologies and digi‐

tal transformation helps him guide clients on their journey to the cloud. He’s

focused on developing and articulating Azure and general cloud best practi‐

ces around governance, networking, security, and computing.

Essentials of Modern Cloud Governance, page 72

Never Take a Single Region Dependency, page 96

Networking First, page 204

Duncan Mackenzie

Duncan Mackenzie, @Duncanma on Twitter, is the

engineering manager for several Microsoft websites

including docs.microsoft.com, azure.microsoft.com, and chan‐

nel9.msdn.com. Over the years, he has written extensively on

programming topics at Microsoft and in a series of books.

These days, his writing can be found on his own blog at www.duncanmack‐

enzie.net, where he likes to focus on his passion for web performance. Out‐

side of tech, he enjoys spending time with his family, traveling when they

can, and exploring the Pacific Northwest when staying closer to home.

Understanding Scalability, page 23

Emily Freeman

Emily Freeman is a technologist and storyteller who helps

engineering teams improve their velocity. As the author of

DevOps for Dummies (Wiley, 2019) she believes the biggest

challenges facing developers aren’t technical, but human. Her

mission in life is to transform technology organizations by

creating a company culture in which diverse, collaborative teams can thrive.

Emily is a principal cloud advocate at Microsoft and lives in Denver, CO,

with her daughter.

Emmanuel Apau

Living and working out of the Shire in the District of Colum‐

bia, Emmanuel Apau, a first-generation Gambian–Ghanian

American, spends his free time ruminating on the final

season of Game of Thrones that could have been. He is the

CTO at the consulting firm Mechanicode.io, cofounder of

the Black Code Collective, and a recipient of DC’s Technical.ly RealLIST

Engineer award. Emmanuel is an AWS-certified DevOps specialist with 10

years of experience developing innovative automation solutions using

DevOps and site reliability best practices for clients. He has a passion for

automation and improving the feedback loop in the developer experience.

Emmanuel has experience in both the public and private sectors, providing

modernization services that engage Agile best practices, scalable cloud archi‐

tectures, and continuous integration and deployment standards. Twitter:

@technoGrouch.

Know Where the Secrets Are Kept and How, page 75

Eric Sorenson

Eric Sorenson has been working in systems administration

since 28.8k modems were exotic luxuries. After running cam‐

pus networks, large-scale production internet services, and

sysadmin teams, he moved to Portland, OR, in 2012 to work

at Puppet as a technical product manager for their core tech‐

nology platform. Since 2018, he’s been focusing on building awesome prod‐

ucts for cloud-centric DevOps engineers.

Working Upstream, page 145

Fernando Duran

Fernando Duran, born in Cadiz, Spain, holds a BS in physics

and an MS in computer science. He has acquired a broad skill

set by working in various roles including researcher, sysad‐

min, software engineer, infosec practitioner, and team leader.

He loves watches, poker, soccer, bad beer, good coffee, and

reading about ancient civilizations. Currently he is the DevOps lead at Kira

Systems—the world leader in automated contract review—and lives in

Waterloo, Ontario, Canada, with his talented artistic wife and two squatters.

Twitter: @fduran.

Don’t SSH into Production, page 78

Test Your Infrastructure with Game Days, page 98

Geoff Hughes

Geoff Hughes is a technology leader who has delivered

results at Fortune 100 companies Cisco and Wells Fargo, and

across the technology, financial, and software industries. He

built Cisco’s first global systems administration team and was

the first recipient of the Cisco IT Global Operations “Excel‐

lence in Operations” award. Geoff also led the Cisco IT team that deployed

the first Cisco MDS, disrupting the SAN market dominated by Brocade and

McData. As head of storage operations for Wells Fargo, he led a global team

that delivered improvements in storage availability while reducing opera‐

tional expense. As the director of SaaS Infrastructure Architecture and Engi‐

neering at CA Technologies, he led a global organization that scaled

infrastructure to support growth from 3 products to 14, resulting in annual

revenue growth from $180 million to $540 million. Currently, he is leading

site reliability engineering for NetApp’s Cloud Volume Services in AWS and

GCP. Geoff loves spending time with his family and playing soccer.

Data Gravity: The Importance of Data Management in the Cloud, page 198

Guillaume Blaquiere

Guillaume Blaquiere has been a Google Developers Expert on

the Cloud Platform since 2019 and works at Veolia as lead

cloud architect. He has been a Java developer for more than

15 years, and despite various responsibilities has always kept

his focus on creating, developing, discovering, and testing

new solutions, especially in the cloud, using machine learning or Python and

Go.

Focus on Your Team, Not on the Cost, page 211

Haishi Bai

Haishi Bai is a principal software architect at Microsoft work‐

ing on innovative projects across the cloud and edge. He’s

been coding for over 30 years and has been working as a soft‐

ware professional for 23 years. He’s a believer in continuous

learning and open knowledge sharing. He has authored nine

cloud computing books and he’s been a volunteer teacher at high schools for

four years, teaching programming skills. Haishi is the cocreator of open

source projects such as OAM and Dapr.

Don’t Think of Services, Think of Capabilities, page 25

Holly Cummins

Holly Cummins is the worldwide development practice lead

for the IBM Cloud Garage. Holly delivers technology-

enabled innovation to clients across a range of industries,

from banking to catering to retail to NGOs. She has led

projects to count fish, help a blind athlete run ultra-

marathons in the desert solo, improve healthcare for the elderly, and change

how city parking works. Holly is also a Java Champion, IBM Q Ambassador,

and JavaOne Rock Star. Before joining the IBM Cloud Garage, she was deliv‐

ery lead for the WebSphere Liberty Profile (now Open Liberty). Holly coau‐

thored Enterprise OSGi in Action (Manning, 2013).

Cloud Engineering Is About Culture, Not Containers, page 213

Isuru J. Ranawaka

Isuru J. Ranawaka is a senior full-stack cloud developer for

the Cyberinfrastructure Integration Research Center (CIRC)

at Indiana University. He has worked on identity and access

management projects for science gateways, transport layer

developments for an enterprise service bus, and E2E applica‐

tion development in Java, Node.js, and React. Isuru has more than six years

of industry experience in software development. Primarily, he is interested in

cloud computing, microservices-based software development, NoSQL-based

data management, CRAN-based network architectures, and communication

technologies.

Identity and Access Management in Cloud Computing, page 80

Ivan Krnić

Ivan Krnić is director of engineering at CROZ, striving to

create the best possible conditions for teams to move for‐

ward. His special areas of interest cover Agile software devel‐

opment, cloud native architectures, complex integrations,

and DevOps culture. As a developer and project manager, he

has seen it all, and now he hopes to dent the universe as an Agile and

DevOps coach. Particularly interested in leadership and organizational

change, he is helping organizations align business and tech, focus their

efforts, and essentially work smarter, not harder. Being an Agile enthusiast,

he is an active member of the community, periodically holding courses and

giving talks on various Agile and DevOps topics. Ivan is a hopeless sucker

for start-up ideas, although all of them have failed so far. He enjoys wind‐

surfing and running. You can find him on Twitter as @ikrnic.

Do More with Less, page 148

Iyana Garry

Iyana Garry is a CompTIA Security+ and CCNA-certified

freelance security researcher with a handful of help desk

experience. She has an affinity for cultivating skills in cloud

computing, coding, and security via self-taught learning as

well as helping aspiring IT professionals start their careers.

Her Twitter handle is @theautom8er.

Treat Your Cloud Environment as if It Were On Premises, page 83

J. Paul Reed

J. Paul Reed began his career in the trenches as a build/

release and operations engineer. After launching a successful

consulting firm, he now spends his days as a senior applied

resilience engineer on Netflix’s Critical Operations & Relia‐

bility Engineering (CORE) team, focusing on incident analy‐

sis, systemic risk identification and mitigation, applied resilience

engineering, and human factors expressed in the streaming leader’s various

socio-technical systems.

REvisiting the Rs of SRE, page 103

Jake Echanove

Jake Echanove started deploying and managing SAP in

cloud-like environments in early 2011. He has helped dozens

of customers move their mission-critical applications to the

cloud, while focusing on the transformational opportunities

that the cloud provides for legacy applications. He has given

many talks on this topic at events including SAP Sapphire, Dell Tech World,

and VMworld. Jake has held a variety of positions in delivery, operations,

and presales. Most recently, he is SVP of Solutions Architecture for an AWS

global partner. Jake loves to travel, eat, root for the 49ers, and spend time

with his wife and two children. Follow him on Twitter: @jakeechanove.

You Can Cloudify Your Monolith, page 27

Jan Urbański

Jan Urbański is a principal software engineer at New Relic,

where he is primarily focused on the backend data pipeline.

Previously he cofounded Ducksboard, a dashboarding SaaS

company acquired by New Relic in 2014, and before that he

worked with audio and video streaming. He is a PostgreSQL

contributor and has also had code accepted in other open source projects,

such as GStreamer, Twisted, and Apache Cassandra. His interests revolve

around database internals, distributed systems, and Linux.

The Importance of Keeping Working Systems Working, page 215

Jason Katzer

Jason Katzer is the creator of CloudPro.app, which creates

developer productivity tools for the cloud, and offers consult‐

ing on cloud native architectures and cloud cost savings. Pre‐

viously, he served as director of software engineering at

Capital One (Paribus/WikiBuy) and at Blink Health. Jason is

also a serial entrepreneur and angel investor who’s been involved with and

started many new ventures. He’s worked in several industries including

healthcare, consumer tech, fitness, sales, finance, and telecom and loves to

help people save both time and money—but his one real focus is on building

quality software. He is a passionate teacher (Make School) as well as a life‐

long learner. He devours TV shows, podcasts, and audiobooks and will

dearly miss the voice of Vin Scully.

Improve Your Monitoring with Visualizations and Dashboards, page 101

Jennine Townsend

Jennine Townsend has been a system administrator and doc‐

umentation enthusiast for a long, long time. As a junior

sysadmin, one of her tasks was to swap in the documentation

updates for the VAX/VMS operating system, which periodi‐

cally arrived as stacks of updated pages that had to be swap‐

ped into the physical documentation notebooks. This was an effective means

of training a junior, and seems to have cemented an awareness of the value

of keeping abreast of updated documentation. Since then, she has seen the

job change and even get new names; programming languages come and go,

companies rise and fall, but fundamentally it’s still about helping people

work together to effectively use technology.

Read the Documentation—Then Reread It, page 230

Jon Moore

Jon Moore is the chief software architect at a Fortune 50

company, where he focuses on leading the company to con‐

tinually sharpen delivery of its software-based products. He

specializes in the “art of the possible,” finding ways to coordi‐

nate working solutions for complex problems and deliver

them on time (even in large enterprises). Jon is equally comfortable leading

and managing teams and personally writing production-ready code, and has

a passion for software engineering—continuously learning and then teaching

colleagues new ways to deliver working, maintainable software with ever-

higher quality and ever-shorter delivery times. His current interests include

distributed systems, fault tolerance, building healthy and engaging engineer‐

ing cultures, and Texas Hold’em. Jon received his PhD in computer and

information science from the University of Pennsylvania and resides in West

Philadelphia, although he was neither born there nor raised there and does

not spend most of his days on playgrounds.

How Economies of Scale Work in the Cloud, page 168

Jonathan Buck

Jonathan Buck received his bachelor’s and master’s degrees

from the Georgia Institute of Technology, and then made his

way to the West Coast to pursue a career in technology. He is

passionate about the opportunities afforded by cloud com‐

puting, and enjoys continuous learning and sharing of best

practices with others.

A Cloud Computing Vocabulary, page 12

Joshua Zimmerman

Joshua Zimmerman has been in tech for the past decade, in a

variety of roles and positions. Joshua is passionate about cre‐

ating sustainable platforms for applications and currently

does this for SportsEngine. He is prone to go on long rants

about how you should respect libraries, universities, and the

public sector more than you do currently. In his spare time, he tweets about

his cats and helps organize DevOps things in Madison, WI.

Effectively Navigating Organizational Politics, page 217

Judy Johnson

Judy Johnson has been a software engineer for a long time,

and has been at Onyx Point since 2015. She has also func‐

tioned as a systems engineer, project manager, scrum master,

and CD store clerk. When not at work, Judy can be found

baking yummy treats for family, friends, and coworkers;

attending hockey games and rock concerts; trying to finish a good book; or

volunteering—especially at events that promote diversity in technology. The

accomplishment she is most proud of is that both of her awesome daughters

are engineers!

Automate or Not-o-Mate?, page 185

Kasun Indrasiri

Kasun Indrasiri is the coauthor of gRPC Up & Running

(O’Reilly, 2020) and Microservices for the Enterprise (Apress,

2018), and a product manager/senior director at WSO2. He

is also a committer and PMC member at the Apache Soft‐

ware Foundation and the founder of the Bay Area Microser‐

vices, APIs, and Integration meetup group.

Integrating Microservices in Cloud Native Architecture, page 29

Katie McLaughlin

Katie McLaughlin (@glasnt) has worn many hats over the

years. She has been a software developer for many languages,

systems administrator for multiple operating systems, and

speaker on many topics. She is currently a developer advo‐

cate at Google Cloud, and was a recipient of the 2017

O’Reilly Open Source Award. When she’s not changing the world, she enjoys

cooking, making tapestries, and seeing just how well various application

stacks handle emoji.

Containers Aren’t Magic, page 32

Ken Broeren

Ken Broeren is a coach, instructor, and consultant who

teaches technologists how to be more effective by helping

them become more human. He’s a 25-year veteran of the IT

industry and has held a variety of engineering and manage‐

ment roles in the military, finance, publishing, and architec‐

ture/engineering/construction industries. He lives in the Colorado

mountains about an hour outside of Denver.

The Power of Vulnerability, page 105

Ken Corless

Ken Corless, DXC Technology’s executive vice president of

Technology, Offerings & Partners, is responsible for DXC’s

technology strategy and driving innovation and growth in

the company’s core offerings. He has more than 30 years’

experience in client-facing roles in the IT industry. Previ‐

ously, he served as chief technology officer for Deloitte’s cloud practice, and

he spent more than 28 years at Accenture, serving as Technology Global

managing partner, executive director of Enterprise Applications, and man‐

aging director of Technology & Architecture. Based in Chicago, he is a grad‐

uate of the Massachusetts Institute of Technology, where he received one BS

in management and a second in mathematics.

Managing Network Transit Costs in the Cloud, page 171

The Cloud Is Not About the Cloud, page 220

Kendall Miller

Kendall Miller was the first hire at Fairwinds (back when it

was ReactiveOps) and has been helping companies adopt

cloud native infrastructure for the last five years. Today his

company focuses on Kubernetes enablement, and he spends

his time in a rocking chair, with a cane, yelling loudly about

semi-important things with his team.

Your CIO Wants to Replatform Only Once, page 34

Kim Schlesinger

Kim Schlesinger is a site reliability engineer. Prior to being an

SRE, Kim was an instructional designer at a code school, and

before that an elementary school special education teacher.

Kim loves working at the intersection of tech and adult edu‐

cation. You can follow her at kimschlesinger.com or on

Twitter (@kimschles).

Practice Visualizing Distributed Systems, page 36

Kit Merker

Kit Merker heads business development for Nobl9, driving

early-stage growth in service reliability for modern cloud

native developers. In his 20+ years of experience with large-

scale software development projects he has worked in a vari‐

ety of roles, from coding to engineering manager, evangelism

to product management. Prior to Nobl9, Kit helped grow JFrog into a

billion-dollar company and worked as a product manager for Kubernetes

and related container initiatives for Google Cloud. Before that, he spent 10

years at Microsoft, where he worked on several products—Windows, Azure,

Office 365, and Bing. Twitter: @KitMerker.

The Basics of Service-Level Objectives, page 107

Laura Santamaria

Laura Santamaria loves to learn and explain how things

work. In her job as a developer advocate at LogDNA, she

bridges the gap between external developers and SREs and

LogDNA’s internal engineering teams. Also, she curates edu‐

cational content like “A Minute on the Mic” and the “Logger

to Logger” newsletter. Find her on Twitter at @nimbinatus, on GitHub as

nimbinatus, and on her website at nimbinatus.com. When not at work, she

cohosts Austin DevOps and Cloud Austin, taught Python for Women Who

Code Austin for many years, and volunteers with devopsdays Austin. She

enjoys mucking around with open hardware and has a particular affinity for

projects that have blinky lights. Outside of tech, Laura runs, plays with her

dogs, throws discs, and watches clouds—the real kind.

Oh, No: No Logs, page 110

Laziz Turakulov

Laziz Turakulov is a digital business analyst at BAT. He has

more than 20 years of IT experience as a developer, system

administrator, and solution architect with exposure to the

operations, marketing, R&D, and now also digital innovation

business areas. Laziz holds various certifications from Google

(GCP Associate Cloud Engineer), Microsoft (Azure DevOps Engineer

Expert, Azure AI Engineer Associate, Azure IoT Developer Specialty, MCSE,

MCSD), SAP, Lotus Development, and Sun Microsystems. In his free time

between full-time work and preparation for the next IT certification exam,

Laziz is learning the art of 3D modeling on the Blender open source plat‐

form, practicing tonal pronunciation in Mandarin Chinese (to prepare for

the next level, HSK2), and exploring principles of Japanese swordsmanship

at the local iaido dojo.

Stay Curious, page 232

Lee Atchison

Lee Atchison is a recognized industry thought leader in cloud

computing and the author of the bestselling book Architect‐

ing for Scale (O’Reilly, 2020), currently in its second edition.

Lee has 33 years of industry experience. He spent eight years

at New Relic, where he led the construction of a solid service-

based system architecture and processes that allowed scaling from a start-up

to a high-traffic public enterprise. He also spent seven years at Amazon,

where he led the creation of the company’s first software download store,

created AWS Elastic Beanstalk, and managed the migration of Amazon’s

retail platform to a new service-based architecture. Lee has consulted with

leading organizations on how to modernize their application architectures

and transform their organizations at scale. He is widely quoted in publica‐

tions as an industry expert and has been a featured speaker at events across

the globe.

Failing a Cloud Migration, page 61

Lisa Huynh

Lisa Huynh is a lead software engineer at Storyblocks, mak‐

ing data better. She holds an MS in computer science from

George Mason University in Fairfax, VA. For over eight years

she’s been working her way across the tech stack, from bat‐

tling browser quirks to carving out microservices. When not

fiddling with code, you’ll probably find her hanging out on aerial silks or

buried in books. Find her on Twitter at @nomnomlisa.

Know Where to Scale, page 39

Use Checklists to Manage Risk, page 112

Lukas Ruebbelke

Lukas Ruebbelke is the vice president of developer growth at

BrieBug, where he has the greatest job in the world. Lukas

gets to spend all his time mentoring and training developers

to be effective and build things that people care about. He’s

also a Google Developer Expert, published author, confer‐

ence speaker, and event organizer.

Everything Is Just Ones and Zeros, page 150

Manasés Jesús Galindo Bello

Manasés Jesús Galindo Bello has been developing applica‐

tions since high school, employing various programming

languages, tech stacks, and software development methodol‐

ogies. He has architected and implemented distributed sys‐

tems and cloud native applications, as well as led projects and

delivered working software to international corporations in the banking, IT,

and IoT sectors (e.g., HSBC, HP, IBM, and Software AG). He has published

articles, spoken at international conferences, and trained fellow software

engineers. When not doing tech-related stuff, he enjoys exploring new cities,

contemplating on the beach, and playing the saxophone. More details can be

found on his personal website, manasesjesus.com.

Serverless Bad Practices, page 41

Manjeet Dadyala

Manjeet Dadyala is a strategist with a keen ability to map an

organization’s desired business outcomes to technology as

his defining differentiator. With a record of consulting exper‐

tise focused on cloud platforms, business model disruption,

and enabling organizations to transform their capabilities

into service market opportunities, Manjeet has made his mark with a range

of customers, stakeholders, and organizations. He’s a technology leader who

has not only led teams but defined and developed offerings to serve the

evolving needs of tomorrow’s customers. Manjeet enjoys working out, eating

healthy, investing, and spending time with his family and friends.

Managing the Cloud Migration Cost Spike, page 173

Marcello Marrocos

Marcello Marrocos is passionate about DevOps and a cloud

advocate. He’s Microsoft Azure DevOps certified, with more

than 20 years of experience developing and architecting solu‐

tions. With extensive experience in project management and

Agile methodologies, he has been applying DevOps princi‐

ples for many years. Marcello previously worked for consulting companies

including Avanade and Accenture. He is currently working for the InterA‐

merican Development Bank in Washington, DC, where he believes that his

work is part of a bigger effort to improve lives in Latin American countries.

Beyond the Portal: Manage Your Cloud with the CLI, page 187

Marko Sluga

Marko Sluga has 20 years of experience in IT and has had the

benefit of witnessing the rise of cloud computing. He has

worked on a variety of cloud-related projects, from corporate

virtualization to migrations to DevOps, as well as fully auto‐

mated, intelligent, serverless, and cloud native solutions. He

is an AWS certified instructor and has authored three books on AWS.

Getting Started with AWS Lambda, page 43

Mattias Geniar

Mattias Geniar is a software developer, system administrator,

and indie hacker. He’s currently building the Oh Dear moni‐

toring service. You can follow him on Twitter at @mattiasge‐

niar.

It’s OK if You’re Not Running Kubernetes, page 46

Michael Friedrich

Michael Friedrich is a developer evangelist with more than 15

years of experience in ops and infrastructure management.

He is passionate about open source development (C++, C#,

Go) and enjoys talking about CI/CD, monitoring/observabil‐

ity, and security at events and meetups. Currently, Michael is

working at GitLab. When he is not engaging on social media, Michael enjoys

building LEGO models.

Everything Is a DNS Problem: How to (Im)prove, page 114

Michael Winslow

Michael Winslow picked up his love for programming when

he was 10 years old writing GW-Basic code on his

Tandy-1000. With his passion for designing simple solutions

to complex problems, Michael has played key roles at compa‐

nies including Aramark, Ortho-McNeil, Oracle, and Xfinity

Mobile. He is a seasoned international public speaker who enjoys using his

platform to uplift engineers and create powerfully diverse teams in technol‐

ogy. Michael is currently a DevOps advocate, Agile enthusiast, and dedicated

people-leader.

Damn It, Jim! I’m a Cloud Engineer, Not an Accountant!, page 175

Michelle Brenner

Michelle Brenner is a senior software engineer with 10 years

of experience in tech, from engineering support to manager.

She runs an interview-format tech podcast called From the

Source that examines what tech jobs are really like. A Phila‐

delphia native who now calls Los Angeles home, she is an art

school graduate and a self-taught engineer. She enjoys making it easier for

others, from artists to entrepreneurs, to create great things. Michelle works

to promote diversity and inclusion in tech through conference speaking and

organizing, mentoring, board membership, and making sure everyone

knows they belong here. You can find her on Twitter: @michellelynneb.

Why Every Engineer Should Be a Cloud Engineer, page 15

Mike Kavis

Mike Kavis has served in numerous technical roles such as

CTO, chief architect, and VP positions and has over 30 years

of experience in software development and architecture. A

pioneer in cloud computing, Mike led a team that built the

world’s first high-speed transaction network in Amazon’s

public cloud, won the 2010 AWS Global Startup Challenge, and is ranked as

one of the Top 100 Cloud Experts and Influencers. Mike is the author of

Architecting the Cloud: Design Decisions for Cloud Computing Service Models

(IaaS, PaaS, SaaS) (Wiley, 2014) and the forthcoming Accelerating Cloud

Adoption: Optimizing the Enterprise for Speed and Agility (O’Reilly, 2021).

Optimizing Processes for the Cloud: Patterns and Antipatterns, page 63

The Cloud Is Bigger than IT: Enterprise-Wide Training Strategies, page 222

Mike Silverman

Mike Silverman, Head of Strategy at the Financial Services

Information Sharing and Analysis Center (FS-ISAC), has a

unique blend of business and technology backgrounds, with

more than 20 years of experience combined in technology

leadership and management consulting across many indus‐

tries. He enables firms to innovate, scale, and transform through increasing

productivity, reducing costs, and streamlining processes and operations.

You can reach Mike on Twitter (@mikebsilverman) and LinkedIn

(linkedin.com/in/mikebsilverman).

Why the Lift-and-Shift Model Is Unlikely to Succeed, page 66

Nathen Harvey

Nathen Harvey, cloud developer advocate at Google, helps

the community understand and apply DevOps and SRE

practices in the cloud. He is part of the global organizing

committee for the devopsdays conference series and was a

technical reviewer for the Accelerate State of DevOps Report.

Nathen formerly led the Chef community, cohosted the Food Fight Show,

and managed operations and infrastructure for a diverse range of web appli‐

cations.

What Is the Cloud?, page 2

Why the Cloud?, page 4

Nikhil Nanivadekar

Nikhil Nanivadekar is the active project lead for the open

source Eclipse Collections framework. He has been working

in the financial sector as a Java developer since 2012. Nikhil

holds a bachelor’s degree in mechanical engineering from the

University of Pune, and a master’s of science in mechanical

engineering with a specialization in robotics and controls from the Univer‐

sity of Utah. In 2018, Nikhil was selected as a Java Champion. In 2020, he

contributed to 97 Things Every Java Programmer Should Know (O’Reilly). He

has always been passionate about open source software, and enjoys creating

content and sharing it with others. He has hosted workshops and talks about

robotics and data structures, and has given introductory talks to share his

enthusiasm about various technologies. He is a regular speaker at technical

conferences worldwide. Nikhil is dedicated to providing and enabling learn‐

ing opportunities for children, and he regularly hosts workshops at confer‐

ences such as JCrete4Kids, JavaOne4Kids, OracleCodeOne4Kids, and

Devoxx4Kids.

Know Thy Topology, page 48

What’s the Time?, page 116

Nirmal Mehta

Nirmal Mehta is a chief technologist in the Strategic Innova‐

tions Group at Booz Allen Hamilton, specializing in research,

implementation, and integration of emerging technologies

for Booz Allen’s client base. He leads the firm’s efforts in dig‐

ital research and development, emerging technology strategy,

and cloud-based innovation. In addition, he is a containerization subject

matter expert (Docker Captain) and advocate for DevOps practices.

Empathy as Code, page 234

Noah Abrahams

Noah Abrahams has been involved in cloud computing,

wearing many hats, since around 2007. He has seen all its

permutations, from the IaaS versus PaaS versus SaaS debates,

to the on-demand bare-metal versus VMs era, and on to

microservices, containers, serverless, and FaaS. He’s spent the

entire time bouncing between low-level hands-on work and higher-level

enablement, education, sales, consulting, and architecture. Currently acting

as an ambassador for the CNCF, in addition to his day job, he’s always happy

to talk about the history of the cloud, the associated ecosystem, and emerg‐

ing patterns. If you find him online or at a conference, he’ll definitely make

time to talk to you. He can be found on Twitter at @Noah_Abrahams.

System Fundamentals Will Still Bite You, page 51

Ori Cohen

Dr. Ori Cohen has a PhD in computer science with a focus

on machine learning and the brain–computer interface. He

has led a data science team in a smart city start-up, primarily

doing natural language processing and natural language

understanding research using machine and deep learning.

Currently, he is a lead data scientist at New Relic TLV in the field of AIOps.

He regularly writes about managing, processes, and all things data science on

Medium.com.

Monitor Your Model Dependencies!, page 118

Peter McCool

Peter McCool was raised by quantum mechanics and so came

to regard computers as a tool to do one’s dirty work from a

young age. He started his IT career in 1995, in desktop sup‐

port. Since then, he’s been a Unix system administrator, vari‐

ous kinds of developer, a tester, and a solution architect,

among other things. DevOps, as something that involves all of these things

and then some, fascinates him.

There’s No Such Thing as a Development Environment, page 120

Rachel Sweeney

Rachel Sweeney is an DevOps engineer at the Pew Research

Center. She enjoys solving problems using AWS, Python,

Kubernetes, and other amazing tools to make data more

accessible and reliable to the data scientists she works with.

When she’s not solving problems for work, she enjoys work‐

ing on her boat and spending weekends with her wife at a quiet anchorage.

From Zero to Cloud Engineer in Less Than a Year, page 236

Reza Salari

Reza Salari is a technology executive in the financial services/

insurance industry and is passionate about the cloud and

how it opens up new possibilities for businesses. He is an

AWS Academy Accredited Educator for the University of

Maryland and has taught undergraduate and graduate cyber‐

security and cloud courses for the past five years. He has spent 10 years of his

career working abroad for both defense and private sector clients, with a

strong focus on training and awareness and people strategy.

Managing Up: Engaging with Executives on the Cloud, page 17

Ricardo Miranda

Ricardo Miranda is a mechanical engineer who started his

career doing high-performance computing in oceanography.

Since then, his passion for large-scale problems has only

grown. Distributed systems in cloud environments are his

current obsession. When he’s not staring at a screen, you

may find him having fun playing soccer or riding a mountain bike.

Be Prepared to Repeat, page 152

Rustem Feyzkhanov

Rustem Feyzkhanov is a machine learning engineer at Instru‐

mental, where he creates analytical models for the manufac‐

turing industry, and an AWS Machine Learning Hero.

Rustem is passionate about serverless infrastructure (and AI

deployments on it) and is the author of the course and book

Serverless Deep Learning with TensorFlow and AWS Lambda (Packt Publish‐

ing, 2019) and the video course Practical Deep Learning on the Cloud.

Cloud Processing Is Not About Speed, page 53

Ryan Bell

Ryan Bell is the founder of a small creative agency in Las

Vegas. He has always had a deep passion for exploring the

intersections between art, science, technology, and the

humanities. This has taken him down the seemingly diver‐

gent paths of studying aesthetic design, functional program‐

ming, music composition, machine learning, entrepreneurship,

biochemistry, philanthropy, and philosophy. Looking back, it’s all converged

to lead him to this point.

Your Greatest Products Are Not the Applications and Services You Produce,

page 154

Ryan Frantz

Ryan Frantz has been practicing software development and

web operations for over 20 years, holding roles in engineer‐

ing and management. His experiences were gained at compa‐

nies ranging from start-ups to large organizations, covering a

breadth of industries including healthcare, ecommerce, and

fintech. He is a craftsman and a storyteller.

Incident Analysis and Chaos Engineering: Complementary Practices, page

122

Sarah Cecchetti

Sarah Cecchetti is a principal product manager at AWS Iden‐

tity. She cofounded a professional organization for identity

practitioners called IDPro and coauthored NIST 800-63-C,

“Digital Identity Guidelines.” She was named one of the top

100 influencers in identity. She has spoken on information

security at the RSA Conference, and keynoted Identiverse. Sarah has been

quoted as an industry expert in The LA Times, Forbes, and Wired.

You Can’t Get Information Security Right Without Getting Identity Right,

page 85

Scott Pantall

Scott Pantall is a father, husband, hockey fan, tech blogger,

comic/art n00b, and full-stack software engineer at Infini‐

cept, a payments tech startup in Denver, CO. Infinicept hosts

everything in the cloud using Azure. Scott has helped grow

his team from 5 employees to over 40 employees in just over

two years. He enjoys making working with his team as productive and enjoy‐

able as possible for everyone involved. Twitter: @scottpantall.

Effectively Monitoring Cloud Services Requires Planning, page 177

Shayon Mukherjee

Shayon Mukherjee is an infrastructure engineer with a for‐

mer background in product engineering. A cloud native,

Shayon enjoys building scalable infrastructure and systems at

companies like Intercom and similar high-growth startups.

He takes a deep interest in performance, availability, and

operations, and believes on-call experience plays a major role in career

growth. In his spare time, he loves to read and spend time outdoors. He can

be found on Twitter as @shayonj.

Handling Network Failures in the Cloud, page 206

Simon Aronsson

Simon Aronsson is a 30-something gopher, developer, public

speaker, and meetup organizer from Sweden. He has been

working in tech for the last 10 years or so, in roles ranging

from full-stack dev and systems architect to scrum master

and ops engineer. During the last couple of years, he has put

a lot of his time into DevOps practices, cloud development, automation, and

creating highly efficient, self-organizing teams. In his spare time, you’ll usu‐

ally find Simon either out and about on his longboard or alpine skis, caring

for the chilies in his hydroponic window garden, building software or hard‐

ware, or playing with his Commodore 64.

Avoid Big Rewrites, page 156

Stephen Kuenzli

Stephen Kuenzli loves designing, building, and operating

software systems that are usable, secure, highly available, and

scalable. Stephen founded k9 Security to help cloud teams

secure data and manage risk, while delivering change quickly

and confidently. He publishes DevOps, cloud, and security

content regularly at https://nodramadevops.com and coauthored Docker in

Action (Manning, 2019). You can reach him on Twitter and most tech plat‐

forms at @skuenzli.

Why Are Good AWS Security Policies So Difficult?, page 87

How Should I Organize My AWS Accounts?, page 125

Theresa Neate

Theresa Neate is a QA practice lead and developer advocate

with several years of leadership experience, who loves Lean

and Agile and advocates for holistic system quality and sys‐

tems thinking. She firmly believes that quality is not equal to

testing and that quality applies to the entire system life cycle,

from inception to her personal favorites, DevOps, operations, and infra‐

structure. Theresa’s background spans more than two decades of technology

and leadership experience. In the last decade she has worked at Thought‐

Works, Australia Post’s Digital Delivery Centre, and digital icon REA

Group, where she spent almost five years; she is now national practice area

lead/head of quality engineering for the technology consultancy Slalom

Build Australia. She is cofounder of and co-organizer and trainer at DevOps‐

Girls. She also writes and speaks on the topics of quality, systems thinking,

Lean, Agile, and DevOps. Theresa is a lifelong and eternally curious skeptic

and learner. You can find her on Twitter: @theresaneate.

Lean QA: The QA Evolving in the DevOps World, page 158

Systems Thinking and the Support Pager, page 224

Tidjani Belmansour

Tidjani Belmansour is a cloud solutions architect working for

Cofomo Canada (cofomo.com), a Microsoft Azure MVP, the

co-organizer of the Azure Quebec user group, a book

reviewer, a blogger (dev.to/tidjani and espacenuagic.com),

and a speaker at conferences and user groups. Tidjani also

holds a PhD in industrial engineering. He likes sharing what he learns, as he

truly believes that we learn more by sharing. While some may say “Sharing is

caring,” he prefers to say “Sharing is learning.” You can reach Tidjani on

Twitter: @Tidjani_B.

Monitor, You Will, page 130

Tiffany Jachja

Tiffany Jachja is a technical evangelist at Harness. She is an

advocate for better software delivery, sharing applicable prac‐

tices, stories, and content around modern technologies.

Before joining Harness, Tiffany was a consultant at Red Hat.

There she used her experience to help customers build soft‐

ware applications living in the cloud. Twitter: @tiffanyjachja.

Source Code Management for Software Delivery, page 161

Curating a DevOps Culture and Experience, page 226

Wietse Venema

Wietse Venema is a software engineer. If he’s not training

teams to build scalable and reliable software, he’s figuring out

how things work so he can be a better engineer and teacher.

He authored Building Serverless Applications with Google

Cloud Run (O’Reilly, 2020), and he’s proud to be the name

twin (not family) of the famous Wietse Venema who wrote Postfix.

How Serverless Simplifies the Developer Experience, page 55

Will Deane

Will Deane has been working in what is currently known as

cyber security for over 20 years, in a range of technical roles

including security operations, security engineering, security

testing (penetration testing), and technical security architec‐

ture. Over this time he’s worked for Cable & Wireless World‐

wide and Regency IT Consulting, a boutique security consultancy where as

chief technology officer he was responsible for managed security services in

addition to technical security consulting. He is currently an independent

consultant through his own company, ASX Consulting Limited, predomi‐

nantly helping public sector organizations safely move sensitive workloads to

the public cloud. He’s also an experienced cyber security trainer, regularly

delivering British Computer Society (BCS) and National Cyber Security

Centre (NCSC) certified courses in security architecture and cloud security

as well as developing bespoke courses for clients.

Side Channels and Covert Communications in Cloud Environments, page 90

Zach Thomas

Zach Thomas leads the cloud SRE team for Genesys. He is

fascinated by the way complex human systems influence

complex technology systems, and vice versa. Zach has 20

years of experience building information systems for the web,

in the domains of education, collaboration, and telecommu‐

nications. In a past life he was a founding member of Okkervil River, quite a

good indie rock band.

Reliable Systems Don’t Happen by Accident, page 133

Zachary Nickens

Zachary Nickens, currently a site reliability engineer at

Woolpert, is a Google Professional Cloud Architect with

expertise in Kubernetes, infrastructure as code, site reliability

engineering, CI/CD, and Linux systems engineering. He has

deep expertise in spatially enabled data products, data model‐

ing, and Bayesian statistics for analysis and prediction. Zac formerly worked

with the Planning and Integration Directorate, Geospatial Integration Office

of the Air Force Civil Engineer Center (AFCEC) at Lackland AFB at Joint

Base San Antonio and Tyndall AFB in Panama City. He also worked as the

staff data engineer for data pipelines, statistical modeling, and automation

systems at USAF GeoBase JBSA. Zac is passionate about the human elements

of DevOps, geospatial software, autism awareness, and golf, which he rou‐

tinely tweets about at @the_nickens.

What Is Toil, and Why Are SREs Obsessed with It?, page 135

Treat Your Infrastructure like Software, page 190

Index

Symbols
2FA (two-factor authentication), 84

3D models, 37

5G, 203

A
A/B testing, 49

Accelerate (Forsgren), 226

access, 2

(see also IAM (identity and access

management))

attribute-based access control, 81

AWS account organization, 127

as cloud characteristic, 2

group-based access control, 81

policy-based access control, 81

role-based access control (RBAC), 73,

81, 182

tokens, 86

accounts

break-glass accounts, 73, 97

governance and review, 72-73

organizing AWS, 125-127

active-passive model of multi-datacenter

architecture, 49

address spaces and unikernels, 21

alerts

billing alerts, 16, 171

feature flags, 143

monitoring alerts, 84, 118-119, 131

toil and, 135

all-active model of multi-datacenter archi‐

tecture, 49

Amazon Relational Database Service

(RDS)

advantages, 8

Amazon Web Services (AWS)

costs, 127

creating virtual machines with CLI,

187

infrastructure as code, 191

Lambda, 41, 43-45

migrating Oracle databases to, 193-195

networking costs, 171-172

number of servers, 168

organizing accounts, 125-127

S3 (Simple Storage Service), 16, 43, 87,

88

security policies, 87-89, 127

shared responsibility model, 87

analytics as code, 196

antipatterns, 63-65

Apache Camel K, 31

App Service (Azure), 204

Application Gateway (Azure), 205

271

application performance management

(APM), 131

application security groups, 204

architecture

AWS account organization, 127

capability-oriented architecture

(COA), 25-26

debugging without logs, 111

designing for reliability, 134

documenting, 227

financial accountability, 166

integrating microservices in native

architecture, 29-31

migrations planning, 62

modular, 48-50

monoliths, 27-28, 156-157

multi-datacenter, 49-50

pitching replatforming, 34-35

security of native architecture, 69-71,

205

service-oriented architecture (SOA),

25-26, 29-31

system topology, 48-50

visualizing distributed services, 36-38

archive data, 199

assets

content delivery networks (CDNs), 40,

171, 205

disaster recovery, 205

security, 84

attack surface, reducing, 69, 182

attribute-based access control, 81

auditing

Azure governance and, 73

Right to Audit, 67

secrets, 76

Aurora (Amazon), 193, 194

authentication and authorization, 7

(see also IAM (identity and access

management))

delegating authorization, 86

governance and, 73

multicloud/hybrid-cloud decisions, 7

multifactor authentication (MFA), 73,

82, 84, 85

OAuth 2.0, 81

OpenID Authentication 2.0, 82

two-factor authentication (2FA), 84

authority and decision making, 217, 218

authorization codes, 82

automation

alerts, 135

checklists and, 113

cloud advantages, 5

culture of, 214

deployment, 56, 185

as DevOps principle, 71, 185

disaster recovery, 199

governance and, 72, 73

infrastructure as code, 181-182,

190-191

migrations and, 66

monitoring, 135

monoliths, 28

resistance to, 186

scaling, 28, 113, 177

security, 73, 78-79, 89

tests, 135, 181, 185

toil and, 135

treating development environment as

production environment, 121, 139

troubleshooting, 56

when to use/not to use, 185-186

with command-line interface scripts,

188-188

availability, 12

(see also resiliency)

CAP theorem, 12

costs, 107-109, 171

data gravity and, 198

defined, 12

during migrations, 60, 215-216

Index272

networking, 204, 206-207

regions and zones, 96, 198

serverless technologies and, 13, 56

as service-level objective (SLO),

107-109

AWS

See Amazon Web Services (AWS), 2

Azure

advantages, 8

creating virtual machines with CLI,

187

governance, 72-74

infrastructure as code, 191

networking basics, 204-205

number of servers, 168

regional resiliency/recovery, 96-97

security, 73, 92

subscriptions, 72-73

B
backoff, 206, 207

backpressure, 149

backups, 84, 96, 199

backward compatibility, 49

beta releases, 143

bias, 232

billing alerts, 16, 171

blame, 227

blast radius, reducing, 69-71, 99, 206

block diagrams, 36

blue/green deployment strategy, 48

Boeing, 124

branches, defined, 161

break-glass accounts, 73, 97

Brown, Brené, 227

budget

error budget, 108

training budget, 212

bugs, 156

(see also debugging; toil)

avoiding big rewrites, 156

team costs and, 212

build environment (see development envi‐

ronment)

business continuity (see disaster recovery)

business incentives and needs

alignment with, 4, 123, 226-228

communicating with executives, 17

evaluating expirations and, 230

incident analysis and, 123

IT transformation potential, 221

business processes, learning about, 232

C
caches

CPU cache timing and side-channel

attacks, 90

managed services advantages, 8

canary deployment strategy/releases, 49,

142

CAP (consistency, availability, partition

tolerance) theorem, 12

capability-oriented architecture (COA),

25-26

capacity, 43

(see also elasticity; scalability)

deploying monoliths and, 27

limiting for reliability, 133

memory capacity and AWS Lambda,

43

subscriptions, 72

capital expenditures (CapEx), 165

cargo cults, 158

CDNs (content delivery networks), 40,

171, 205

certifications, 237

cgroups, 70

change fail percentage, 5

chaos engineering/testing, 98

(see also disaster recovery)

DNS troubleshooting, 115

game days, 98-100

Index 273

with incident analysis, 122-124

checklists

disaster recovery, 100

migrating Oracle databases, 194

risk management, 112-113

churn, 159

CI/CD (see continuous integration/

continuous delivery (CI/CD))

circuit breakers, 134, 143

civic tech, 10-11

CLI (command-line interface), 187-189

client types, 81

client-server programming model, 148

cloud, 2

(see also hybrid-cloud environments;

multicloud environments)

advantages, 4-5, 213-214

agnosticism, 35

antipatterns, 63-65

client understanding of, 220

communicating cloud vision and strat‐

egy, 223

compatibility and migrating Oracle

databases, 194

defined, 2, 80

for good, 10-11

key characteristics, 2-3

potential to transform IT, 220-221

terms, 12-14

types of clouds, 80

cloud consumption model, 165-167

CloudWatch (Amazon), 45

COA (capability-oriented architecture),

25-26

code, 7

(see also infrastructure as code; legacy

applications and code)

analytics as, 196

authorization code, 82

code reviews, 186

debugging without logs, 111

multicloud/hybrid-cloud decisions, 7

source code storage, 67

using open source software, 145-147

writing directly in AWS Lambda, 43

Code for America, 11

command and control antipattern, 64

command-line interface (CLI), 187-189

commits

commit messages, 163

culture of CI/CD and, 214

defined, 161

evaluating open source software by,

145

rules, 163

committees, decision-making by, 218

communication

asynchronous, 134

avoiding jargon, 17, 113

cloud vision and strategy, 223

covert communications, 90-92

decision-making, 217-219

disaster recovery, 99

with executives, 17-18, 59-60, 107-109

migrations, 59-60

service-level objectives (SLOs),

107-109

communities

open source software, 146

professional development and, 146,

236

compliance, 64, 182

(see also security)

configuration

AWS account organization, 125

of AWS security policies, 87

cloud advantages, 56

firewalls, 56, 83

security of, 74, 83, 84

testing Lambda functions, 44

version control and, 163

consistency in CAP theorem, 12

Index274

constraints, theory of, 149

containers

advantages, 20

container as a service, 53

lifespan of, 69

microVMs, 20-22

sandboxes, 33

security, 20, 32-33, 69-71

unikernels, 21-22

as virtual machines, 32

content delivery networks (CDNs), 40,

171, 205

context

communicating with executives, 18

decision-making, 218

names, 141

continuous integration/continuous deliv‐

ery (CI/CD)

antipatterns, 63

AWS account organization, 125

AWS security policies and, 89

challenges of, 214

with command-line interface scripts,

189

culture of, 214

debugging without logs, 110

feature flags, 142-144, 214

as rebound example, 104

side-channel attacks, 91

test-driven development and, 184

toil and, 135

version control and, 163

continuous security, 70

control groups, 70

convergence/divergence, 235

Coordinated Universal Time (UTC), 116

coresidency and side-channel attacks, 91

Cosmos DB, 96

costs

autoscaling, 177

availability, 107-109, 171

AWS, 127

billing alerts, 16, 171

cloud consumption model, 165-167

communicating with executives, 18

dedicated machines, 92

duplicate messages, 152

economies of scale, 168-170

error budget, 108

expirations and, 230

FaaS, 41, 211-212

financial accountability for, 166, 172

FinOps, 165-167

fully managed resources, 13

guardrails, 166, 167

licenses, 165, 173, 230

managed services, 9

measured service model, 3

microservices, 176

migrations, 61, 173-174, 212

monitoring costs, 131, 175-176

of monitoring, 176

networking, 171-172, 173, 176

open source software, 146

optimizing for, 53-54

pay-as-you-go model, 148

pricing models, 176

reactive programming model, 148-149

reserved pricing, 176

resources, 13, 176, 177

S3, 16

scaling decisions and, 24

serverless technologies, 41, 53, 55

teams, 9, 174, 211-212

total cost of ownership, 173

covert communications, 90-92

creativity

versus automation, 185-186

debugging without logs, 110

professional development and, 233

visualizations and, 101

credentials, 81

Index 275

(see also authentication and authoriza‐

tion)

as element of IAM, 81

in federated identity management

model, 85

in multifactor authentication, 85

security of, 82, 83

side-channel attacks, 91

credits, 16

cruft (see toil)

culture

antipatterns, 63-65

of automation, 214

avoiding silos, 209-210

of CI/CD, 214

decision-making, 217-219

DevOps, 65, 224-225, 226-228

empathy as code, 234-235

interdependence in, 224-225

team culture, 105-106, 213-214

curiosity, 232-233

D
Dare to Lead (Brown), 227

dashboards, monitoring, 101-102, 131

data, 12

(see also telemetry)

archive, 199

compression, 171

consistency of, 12

costs, 171-172

DataOps, 196-197

durability of, 12

gravity, 198-200

message metadata, 153

playground security and, 73

recovery, 96-97, 198

replicating, 172

reproducible data, 196

retention, 199

visualizations, 37

database as a service (DBaaS), 193-195

Database Migration Service (AWS), 194

databases

database as a service (DBaaS), 193-195

debugging without logs, 111

horizontal scaling and, 40

migrating Oracle databases, 193-195

migration challenges, 66

regional resiliency and, 96

DataOps, 196-197

dates

date-time representation, 116-117

secrets, 76

daylight savings time, 116

DBaaS (database as a service), 193-195

DDoS (distributed denial-of-service)

attacks, 84

debugging

DNS, 114-115

FaaS, 41

without logs, 110-111

Oracle database migrations, 195

serverless technologies, 41

system fundamentals and, 51-52

time representation and zones, 117

toil and, 136

visualizing distributed systems and, 38

decision-making, 217-219, 234-235

dedicated machines, 92

delegated identity management (DIM), 81,

86

delegating decisions, 218

dependencies

designing for reliability, 134

monitoring, 118-119

deployment, 48

(see also continuous integration/

continuous delivery (CI/CD))

automating, 56, 185

AWS account organization, 127

AWS security policies and, 89

Index276

cloud advantages, 15, 213

defined, 48

with feature flags, 142-144, 214

frequency as key metric, 5

migrating Oracle databases and, 194

monitoring package and, 119

monoliths, 27-28

multicloud/hybrid-cloud decisions, 7

serverless technologies, 56

single-instance, 27

strategies, 48-49, 142-143

treating development environment as

production environment, 138-139

design

antipatterns, 63-65

avoiding rewrites, 156-157

capability-oriented architecture

(COA), 25-26

client-server programming model, 148

creating Magic Moments, 154-155

design thinking, 235

for failure, 134, 140-141

feature flags in design stage, 143

for financial accountability, 166

for idempotency, 152-153

KISS principle, 140-141

for monitoring, 132

with open source software, 145-147

reactive programming model, 148-149

for reliability, 133-134

resiliency and scalability as key,

128-129

understanding big picture, 150-151

Dev.to, 16

development environment

AWS account organization, 127

networking costs, 172

treating as production environment,

120-121, 138-139

DevOps, 7

(see also infrastructure as code)

antipatterns, 63-65

automation as key principle, 71, 185

culture, 65, 226-228

DataOps, 196-197

defining target outcomes, 226-228

DevOps, 224-225

empathy as code, 234-235

interdependence in, 224-225

Lean QA in, 158-160

with monoliths, 28

phases, 185

security, 70, 71

visibility, 7

DevOps Research & Assessment (DORA),

5, 184

diagrams, 36

(see also visualizations)

block, 36

documenting architecture, 228

web sequence, 37

DIM (delegated identity management), 81,

86

disaster recovery, 98

(see also chaos engineering/testing)

AWS account organization, 126

data and, 198

documentation, 99-100, 199

game days, 98-100

governance and, 73

multi-datacenter architecture, 49

networking and, 204-205

practicing, 97, 98-100, 134, 199

regional resiliency, 96-97

RTO/RPO (recovery time objective/

recovery point objective), 96-97,

199, 205

runbooks, 99-100, 141

secrets and, 76

security of, 73

toil and, 136

Index 277

distributed denial-of-service (DDoS)

attacks, 84

divergence/convergence, 235

DNS, 114-115, 125

documentation

architecture, 227

augmenting, 16

checklists as, 112-113

disaster recovery, 99-100, 199

DNS, 114-115

FaaS, 42

functions, 42

incident analysis, 122

infrastructure as code, 181

KISS design principle, 141

optimizations, 141

professional development and, 230-231

serverless technologies, 42

tests, 94

visualizations for, 102

DORA (DevOps Research & Assessment),

5, 184

duplicate messages and idempotency,

152-153

durability, defined, 12

duration, computing, 116

E
EBS (Elastic Block Service), 94

EBS (Elastic Block Store), 193

EC2, 193

editors, 43

Elastic Block Service (EBS), 94

Elastic Block Store (EBS), 193

elasticity, 13

(see also scalability)

costs, 13, 54

defined, 13

as key characteristic, 3

migrations and, 61

monoliths and, 27

serverless technologies and, 13

empathy as code, 234-235

employees (see teams)

encryption, 77, 83, 91

endpoints, debugging without logs,

110-111

enterprise service bus (ESB), 29

environments

AWS account organization, 127

debugging without logs, 111

monitoring packages and, 118-119

networking costs, 172

security scans and infrastructure as

code, 182

sharing secrets and, 75

terminating abandoned, 172

treating development environment as

production environment, 120-121

error budget, 108

ESB (enterprise service bus), 29

ETL tools, 8

Examine, Right to, 67

executives

communication with, 17-18, 59-60,

107-109

migrations and, 59-60

pitching replatforming, 34-35

service-level objectives (SLOs),

107-109

testing disaster recovery, 100

using open source software, 146

experience curves, 168-170

expirations, 230

exponential backoff, 207

ExpressRoute (Azure), 205

F
FaaS (function as a service), 13, 41-42,

211-212

(see also serverless technologies)

failover, 96-97, 198

Index278

failures, 103

(see also disaster recovery)

automation and, 56

designing for, 134, 140-141

monitoring platform failures, 131

networking, 206-207

reliability engineering terms, 103-104

fallback values, 134

feature flags, 142-144, 214

federated identity management (FIM)/

federation model, 81, 85

feedback

beta testers, 143

on decisions, 219

gray failures, 99

importance of, 94, 150-151, 186

QA as, 159-160

vulnerability and, 227

FIM (federated identity management), 81,

85

financial accountability, 166, 172

financial tracing, 166, 167

FinOps, 165-167

firewalls, 56, 83, 84

forecasting

spending, 165

techniques, 235

Forsgren, Nicole, 5, 226

Front Door (Azure), 97, 205

function as a service (FaaS), 13, 41-42,

211-212

(see also serverless technologies)

functionality, monitoring, 131

functions, Lambda, 43-45

G
game days, 98-100

Git, 162

git-flow, 162

GitOps, 182

Google Cloud Platform

advantages, 8

creating virtual machines with CLI,

188

infrastructure as code, 191

number of servers, 168

sole-tenant nodes, 92

governance, 64

(see also security)

antipatterns, 64

elements of, 72-74

multicloud/hybrid-cloud decisions, 7

open source software, 145

grant types, 81

gravity, data, 198-200

gray failures, 99

group-based access control, 81

guardrails, 166, 167

H
Hack Baltimore, 11

hardware and side-channel attacks, 90-92

high-performance computing (HPC), 80

Hightower, Kelsey, 35

hobbies, 233

horizontal scaling (scaling in/out)

defined, 13, 128

limiting for reliability, 133

versus scaling vertically, 39-40, 128

understanding, 24-24

when to use, 39-40

HPC (high-performance computing), 80

human resources and training strategies,

222-223

Hybrid Connection Manager (Azure), 205

hybrid-cloud environments

costs, 172, 174

defined, 80

infrastructure as code, 191

migration challenges, 66

networking basics, 204

strategies for, 6

Index 279

usage rates, 6

I
IaC (see infrastructure as code)

IAM (identity and access management)

AWS account organization, 127

AWS security policies and, 87-88, 127

defined, 85

governance and, 73

infrastructure as code, 182

secrets management, 77

using, 80-82, 85-86

idempotency, 152-153, 180, 191

identity brokers, 81

identity linking, 82

identity providers (IdPs), 81

identity stores, 85

immutability in infrastructure as code, 180

inbound identity federation, 81

incident analysis, 122-124

incident manager, 99

incremental deployment strategy, 48

infrastructure as code

advantages, 190-191

empathy as code, 234-235

patterns, 190

principles of, 180-182

scripts with command-line interface,

188, 189

security, 79, 182

testing and, 181, 183-184

toil and, 135, 190-191

tools, 190

version control and, 163, 181, 190

integrating microservices in native archi‐

tecture, 29-31

Integration Services (Azure), 204

integration testing

infrastructure as code, 181

test-driven development, 184

integration, continuous (see continuous

integration/continuous delivery (CI/

CD))

interdependence, 224-225

intrusion prevention systems (IPS), 67

IP addresses and costs, 171

iron triangle, 177

Isolated Instances (Azure), 92

isolation standards/mechanisms, 32

J
jitter, 206, 207

Johnson, Kelly, 140

K
key management services, 83

keys, 77, 83, 91

kill switches, 143

Kim, Gene, 158

KISS principle, 140-141

Kotter, John, 223

Kubernetes

enhancement proposals, 146

in hybrid environments, 204

networking and, 202-203

security, 69, 70

service meshes, 30

as trendy, 34, 46

L
Lambda (Amazon), 41, 43-45

language processing, natural, 26

latency

horizontal scaling and, 128

migrations and, 66

multi-datacenter architecture, 49

as service-level objective (SLO), 109

time-outs and, 206

lead time as key metric, 5

Lean QA, 158-160

learning, 46

Index280

(see also professional development)

certifications and, 237

from chaos engineering and incident

analysis, 122-124

curiosity and, 232-233

KISS principle, 141

in meetups, 236, 237

for network engineering, 202

problem solving and, 15

restrictions on, 34-35

tech colleges, 223

tools, 46-47

learning curves, 168-170

least privilege principle, 73, 88

legacy applications and code

debugging without logs, 110-111

deploying with cloud, 27-28

security, 33

level of effort (LOE) and costs, 174

libraries, using with FaaS/serverless, 42

licenses

costs, 165, 173, 230

open source software, 145

lift-and-shift migrations

versus big rewrites, 157, 216

disadvantages of, 66-67

effect on team skills, 222

linear backoff, 207

Linux

DNS troubleshooting, 115

SELinux, 70

load balancers

in checklists, 113

network security and, 205

optimizing for cost, 53

scaling with, 40

security and, 84

load-testing tools, 95

lock-in, 6, 9

Lockheed Martin, 140

LOE (level of effort) and costs, 174

login/logout

logging into servers manually, 78-79

security, 82, 84, 86

logs

AWS account organization, 125

AWS Lambda, 45

costs of, 176

debugging with, 52

debugging without, 110-111

DNS troubleshooting, 115

log services versus logging in manually,

78

migrations and, 66, 195

security of, 66, 78

treating development environment as

production environment, 121

M
Magic Moments, 154-155

maintenance

infrastructure as code and, 181

Oracle databases, 193

serverless technologies/FaaS, 41, 42

treating development environment as

production environment, 138

managed services

advantages, 8-9

defined, 13

infrastructure as code and, 190

when not to use, 9

management (see executives)

measured service model, 3

meetups, 11, 236, 237

Meltdown, 91

memory

capacity and AWS Lambda, 43

microVMs, 20

reactive programming model, 149

memory buses and side-channel attacks,

90

messages

Index 281

commits, 163

idempotency, 152-153

managed services advantages, 8

metadata, message, 153

metrics, 5

(see also monitoring; visualizations)

in checklists, 113

cloud advantages, 56

cloud costs, 167

debugging with, 52

key, 5

MFA (multifactor authentication), 73, 82,

84, 85

Micronaut, 31

microservices

avoiding big rewrites, 157

costs, 176

integrating in native architecture,

29-31

modularity, 48

monoliths and, 27, 28, 211

robustness, 103

sharing secrets, 75

Microsoft (see Azure)

microVMs, 20-22

migration architects, 62

migrations, 66-67

availability during, 215-216

versus big rewrites, 157, 216

communicating on, 59-60

costs, 61, 173-174, 212

lift-and-shift, 66-67, 157, 216, 222

logs and, 66, 195

mistakes, 61-62

optimizing for cloud, 61-62

Oracle databases, 193-195

planning, 61-62

reasons for, 215

team challenges, 211

testing, 66

modularity

infrastructure as code and, 181

microservices, 48

optimizing for cost and, 54

system topology, 48-50

monitoring

alerts, 84, 118-119, 131

AWS account organization, 125

costs, 131, 175-176

costs of, 176

dashboards for, 101-102, 131

defined, 130

dependencies, 118-119

disaster recovery testing, 100

DNS troubleshooting, 115

feature flags, 143

as feedback, 159

governance and, 73

importance of, 130-132

monoliths, 28

outside cloud, 130

planning for, 177-178

security, 84, 131

with service telemetry, 78, 130-132

toil and, 135

treating development environment as

production environment, 121

visualizations for, 101-102, 131

visualizing distributed systems and, 38

monoliths, 27-28, 156-157, 211

multi-datacenter architecture, 49-50

multicloud environments

infrastructure as code, 191

networking costs, 172

strategies for, 6-7

usage rates, 6

multifactor authentication (MFA), 73, 82,

84, 85

N
names

conventions, 141

Index282

feature flags, 143

secrets, 75

namespaces, 70

National Institute of Standards and Tech‐

nology (NIST), 2

native architecture

integrating microservices in, 29-31

security and, 69-71, 205

natural language processing (NLP), 26

network engineering, 202-203

network security groups, 204

networking

availability, 204, 206-207

basics, 204-205

broad access as cloud characteristic, 2

configuration, 56

content delivery networks (CDNs), 40,

171, 205

costs, 171-172, 173, 176

direct connections, 172

disaster recovery and, 204-205

failovers and regional resiliency, 97

governance and, 72, 73

resiliency, 204

resiliency and scalability as key,

206-207

role of, 202-203

security, 83, 204-205

testing disaster recovery, 99

time-outs, 206

zones, 204

NIST (National Institute of Standards and

Technology), 2

NLP (natural language processing), 26

nonprofits and cloud for good, 10-11

NoSQL databases and horizontal scaling,

40

O
OAuth 2.0, 81, 86

observability

debugging with, 52

DNS troubleshooting, 115

feature flags, 143

importance of, 7, 38, 135

microservices and, 30

visualizing distributed systems and, 38

office politics, 217-219

OIDC (OpenID Connect), 82, 85

open source software, 11, 145-147

Open Web Application Security Project

(OWASP) Top 10, 71

OpenID Authentication 2.0, 82

operating expenditures (OpEx), 165

opinions, strong, 235

Oracle databases, migrating, 193-195

OSI Model Layer 2, 67

outbound identity federation, 81

outcomes, defining target, 226-228

outputs versus outcomes, 226

OWASP (Open Web Application Security

Project) Top 10, 71

ownership

infrastructure as code and, 181

migrations, 67

secrets and, 76

subscriptions, 72

support pagers and, 225

total cost of, 173

P
PaaS (platform as a service), 35, 80, 204

packages

monitoring, 118-119

security, 32

parallelization, 53, 153

partition tolerance in CAP theorem, 12

passwords

password managers, 77

primary passwords, 77

resource owner password, 82

peer reviews, 190

Index 283

peering, 97, 204, 205

performance

containers, 20

improving older tools, 47

metrics, 177-178

microVMs, 20

optimizing for, 53-54

pitching replatforming, 34

team costs and, 212

unikernels, 21

personnel (see teams)

The Phoenix Project (Kim), 158

platforms

data as, 197

monitoring health of, 131

platform as a service (PaaS), 35, 80, 204

security of, 70-71

playbooks (see runbooks)

playgrounds, 73

podcasts, 16

policies

cost-control, 167

FinOps, 167

policy enforcement and multicloud/

hybrid-cloud decisions, 7

policy-based access control, 81

retry, 134, 206, 207

security, 70, 127

politics, office, 217-219

pooling, 3

portability, 6, 212

ports, security of, 84, 205

postmortems, 100, 115

primary passwords, 77

private clouds

defined, 80

limitations of early, 220

Private Link (Azure), 204

privilege principle, least, 73, 88

privileged identity management, 73

procurement and FinOps, 165-167

prod-parallel (shadow) deployment strat‐

egy, 49

production environment

avoiding logging in manually, 78-79

AWS account organization, 127

testing disaster recovery, 98

testing in, 138, 143

treating development environment as,

120-121, 138-139

professional development, 15

(see also learning)

avoiding silos, 209

certifications, 237

cloud engineering advantages, 15-16

cloud for good, 11

communication with executives, 17-18,

59-60, 107-109

communities and, 146, 236

curiosity, 232-233

documentation and, 230-231

empathy as code, 234-235

getting started, 236-237

network engineering, 202-203

resources on, 236

teaching, 233

tools and, 46-47

understanding big picture, 150-151

visualizations, 38

provisioning

AWS account organization, 126

cloud advantages, 2, 4, 56

IAM, 81

infrastructure as code, 180-182,

190-191

toil and, 135

public clouds, defined, 80

pull request model, 162

push, defined, 161

Q
QA

Index284

Lean, 158-160

support pagers and, 225

R
RBAC (role-based access control), 73, 81,

182

RDBMS and migrating Oracle databases,

193, 194

RDS (Amazon), 193, 194

re-create deployment strategy, 48

reactive programming model, 148-149

rebound, defined, 104

recovery (see disaster recovery)

recovery time objective/recovery point

objective (RTO/RPO), 96-97, 199, 205

red team, 98

red, green refactor, 183-184

redundancy

multi-datacenter architecture, 49

redundant storage and resiliency, 96,

97

refresh tokens, 82

regional availability/resiliency, 96-97, 171,

198

reliability

defined, 104

design for, 133-134

scaling and, 24, 40

as service-level objective (SLO),

107-109

team costs and, 212

terms, 103-104

toil, 135-136

reliability engineering, 103-104, 135-136

repository, using, 161-163

reproducible data, 196

reputational currency, 146

requests for comments, 219

reservations, expiring, 230

reserved pricing, 176

resiliency

antipatterns, 64

defined, 104, 129

importance of, 128-129

networking, 204, 206-207

regional, 96-97, 198

terms, 103-104

resiliency engineering, 103-104

resource groups, 73, 97

resource owner password, 82

resources, 13

(see also elasticity; scalability)

AWS account organization, 125

AWS security policies, 87-88

consumption in AWS Lambda, 45

control groups, 70

costs, 13, 176, 177

deleting unused, 141

exhaustion, 206, 207

fully managed, defined, 13

pooling as cloud characteristic, 3

security, 70, 84

testing, 181

testing disaster recovery, 99

time-outs, 206

responsibility, shared, 234-235

restoration time as key metric, 5

retrospectives, 227

retry policies, 134, 206, 207

rewrites

avoiding, 156-157, 216

strangler pattern, 157

Right to Audit/Examine, 67

ring-deployment strategy, 142

(see also canary deployment strategy/

releases)

risk management

checklists, 112-113

feature flags, 143

robustness

defined, 103

incident analysis and, 122

Index 285

role-based access control (RBAC), 73, 81,

182

rolling updates deployment strategy, 48

rotating

encryption keys, 77, 83

secrets, 75

RTO/RPO (recovery time objective/recov‐

ery point objective), 96-97, 199, 205

runbooks

disaster recovery, 99-100, 141

DNS troubleshooting, 115

risk management with checklists,

112-113

visualizations in, 102

S
S3 (Amazon)

AWS Lambda and, 43

AWS security policy, 87, 88

costs, 16

SaaS (software as a service), 75, 77, 80

SAML (Security Assertion Markup Lan‐

guage), 85

sandboxes, 33, 126

scalability

automated scaling, 28, 113, 177

backoffs and, 206, 207

in checklists, 113

defined, 13, 128

economies of scale, 168-170

importance of, 128-129

infrastructure immutability and, 180

limiting factors, 24

limiting for reliability, 133

monoliths and, 27

multi-datacenter architecture, 49

network security and, 205

optimizing for, 53-54

optimizing migrations, 61

serverless technologies, 55

understanding, 23-24

when to use, 39-40

scaling down/up (see vertical scaling (scal‐

ing up/down))

scaling in/out (see horizontal scaling (scal‐

ing in/out))

schema, converting in Oracle database

migrations, 194

SCIM (System for Cross-domain Identity

Management), 82

SCM (source code management) (see ver‐

sion control)

scopes, 81

scripts, 188, 190

seccomp, 70

secrets, 75-77, 182

security, 83

(see also governance; IAM (identity

and access management))

antipatterns, 64-65

attack surface, reducing, 69, 182

automation and, 73, 78-79, 89

AWS account organization, 125-127

Azure, 73, 92

backups and, 84

of configuration, 74, 83

containers, 20, 32-33, 69-71

continuous, 70

covert communications, 90-92

distributed denial-of-service (DDoS)

attacks, 84

high-performance computing, 80

infrastructure as code, 79, 182

intrusion prevention systems (IPS), 67

least privilege principle, 73, 88

legacy code, 33

Linux, 70

logging into servers manually, 78-79

of logs, 66, 78

managed services, 9

migrations and, 66-67

monitoring, 84, 131

Index286

multicloud/hybrid-cloud decisions, 7

namespaces, 70

native architecture and, 69-71, 205

networking, 83, 204-205

OWASP Top 10, 71

packages, 32

platform security, 70-71

policies, 70, 87-89, 127

ports, 84, 205

reducing blast radius, 69-71, 99, 206

of resources, 70, 84

scanning services, 33

of secrets, 75-77, 182

serverless technologies and, 56

shared responsibility model, 87

side-channel attacks, 90-92

SSH and, 78-79, 83

strategies, 83-84

texting, 85

unikernels, 21

Security Assertion Markup Language

(SAML), 85

self-service, as cloud characteristic, 2

SELinux, 70

semantic discovery, 26

separation of concerns, 48

server management

avoiding logging in manually, 78-79

serverless technologies, 55-57

tasks, 56

serverless technologies, 13

(see also Lambda (Amazon))

advantages, 55-57

costs, 41, 53, 55

debugging without logs, 111

defined, 13, 41, 55

networking basics, 204

poor practices, 41-42

security and, 56

service meshes, 30

service-level objectives (SLOs), 107-109

service-oriented architecture (SOA)

versus capability-oriented architecture

(COA), 25-26

integrating microservices, 29-31

services, 36

(see also availability; managed services)

debugging without logs, 110-111

gray failures, 99

integrating microservices, 29-31

visualizations, 36-38

shadow (prod-parallel) deployment strat‐

egy, 49

shadow IT, 64

shared logins, 82

shared responsibility model, 87

sharing IAM pattern, 81

side-channel attacks, 90-92

sidecars, 30

silos, avoiding, 209-210

SIM-swapping attacks, 85

Simon, Herbert, 235

Simple Storage Service (S3) (see S3 (Ama‐

zon))

single sign-on (SSO), 82

site reliability engineering (SRE), 135-136

SLOs (service-level objectives), 107-109

smoke tests, 181

software as a service (SaaS), 75, 77, 80

sole-tenancy, 92

source code management (SCM) (see ver‐

sion control)

source control (see version control)

Spectre, 91

Spolsky, Joel, 216

SQL databases

permissions, 73

regional resiliency and, 96

SRE (site reliability engineering), 135-136

SSH

debugging without logs, 110

security and, 78-79, 83

Index 287

SSL/TLS certificate, 83

SSO (single sign-on), 82

staff (see teams)

stakeholders

avoiding big rewrites, 156

feedback from, 60, 219

migrations and, 59-60

service-level objectives (SLOs), 108

state, 40

(see also idempotency)

duplicate messages, 152-153

horizontal scaling and, 40

static analysis, 181

static assets (see assets)

storage

costs, 176

managed services advantages, 8

migrations and, 67

redundant storage and resiliency, 96,

97

Simple Storage Service (S3), 16, 43, 87,

88

strangler pattern, 157

strong opinions, 235

subscriptions, 72-73

summer time, 116

Superforecasting (Tetlock), 235

support pager and interdependence,

224-225

surprise

incident analysis and, 123

Magic Moments, 155

synchronization IAM pattern, 81

System for Cross-domain Identity Man‐

agement (SCIM), 82

systems

debugging system fundamentals, 51-52

topology, 48-50

visualizing distributed services, 36-38

T
tags and tagging

networking costs, 172

version control, 162

TDD (test-driven development), 183-184

teaching, 233

teams, 9

(see also culture; professional develop‐

ment)

avoiding big rewrites, 156

avoiding silos, 209-210

AWS account organization, 127

costs, 9, 174, 211-212

decision-making, 217-219

disaster recovery, 98

empathy as code, 234-235

empowerment, 225, 227

financial understanding, 178

interdependence of, 224-225

shadow IT, 64

teams, 186

training strategies, 222-223

understanding big picture, 150-151,

228

upskilling, 174

vulnerability, 105-106, 227

tech colleges, 223

technical debt, 130

technical teaching, 122

telemetry

AWS account organization, 125

feature flags, 143

monitoring with, 78, 130-132

Terraform, 180, 191

test environment

debugging without logs, 111

disaster recovery, 98

networking costs, 172

setup, 95

test-driven development, 184

Index288

treating as production environment,

139

test-driven development (TDD), 183-184

testing, 94

(see also chaos engineering/testing; test

environment)

A/B testing deployment strategy, 49

automated, 135, 181, 185

AWS Lambda functions, 44-45

cloud advantages, 94

disaster recovery, 98-100

DNS, 115

documenting tests, 94

with dummies, 181

as feedback, 159

importance of, 94-95

infrastructure as code and, 181,

183-184

load-testing tools, 95

versus manually logging in, 79

migrations, 66

in production environment, 143

treating development environment as

production environment, 138

scaling decisions and, 24

smoke tests, 181

static analysis, 181

test-driven development, 183-184

toil and, 135

Tetlock, Philip, 235

texting, security of, 85

theory of constraints, 149

“Things You Should Never Do, Part I”

(Spolsky), 216

time

data retention, 199

duplicate messages, 153

lead time as key metric, 5

library warm-up time, 42

messages time to live (TTL), 153

restoration time as key metric, 5

RTO/RPO (recovery time objective/

recovery point objective), 96-97,

199, 205

secrets time to live (TTL), 76

in testing disaster recovery, 99

time-outs, 134, 206

zones, 116-117

time-outs, 134, 206

TLS (Transport Layer Security) services

and side-channel attacks, 91

toggles (see feature flags)

toil, 135-136, 190-191

tokens

access, 86

refresh, 82

tools

infrastructure as code, 190

load-testing tools, 95

multicloud/hybrid-cloud decisions, 6

professional development and, 46-47

tool creep, 209-210

trends in, 46-47

topology

governance and, 73

networking costs, 172

system topology, 48-50

Traffic Manager (Azure), 97, 205

training

budget, 212

migration costs, 174, 212

strategies, 222-223

Transferize, 171

Transport Layer Security (TLS) services

and side-channel attacks, 91

troubleshooting, 56

(see also debugging)

automating, 56

designing for reliability and, 133

DNS, 114-115

without logs, 110

manually logging in for, 79

Index 289

serverless technologies and, 56

trunk, defined, 161

two-factor authentication (2FA), 84

U
unhappy path, designing for, 133-134

unikernels, 21-22

unit testing and infrastructure as code, 181

usage patterns, monitoring, 131

user experience

availability and, 198

managing expectations, 59

monitoring, 131

UTC (Coordinated Universal Time), 116

utilization rates, monitoring, 175

V
velocity

advantages, 69

cloud advantages, 9

test-driven development, 184

toil and, 135

version control and, 162

vendor lock-in, 6, 9

version control

infrastructure as code and, 163, 181,

190

secrets, 76

test-driven development and, 184

using, 161-163

versions

infrastructure as code and, 181

monitoring packages, 118

secrets and version numbers, 76

vertical scaling (scaling up/down)

defined, 13, 128

versus scaling horizontally, 39-40, 128

understanding, 23-24

when to use, 39-40

virtual machines

costs and economies of scale, 168-170

creating with command-line interface,

187-188

dedicated machines, 92

failover VMs, 96-97

as isolation mechanisms, 32

microVMs, 20-22

networking security, 204-205

side-channel attacks, 90-92

Virtual Network (Azure), 97

visibility

of costs, 166, 167

dashboards and, 102

debugging and, 52

defined, 7

IaC pipelines, 182

importance of, 3

vision, communication of, 223

visualizations

distributed services, 36-38

for monitoring, 101-102, 131

VNet (Azure), 97

vulnerability, 105-106, 227

W
WAF (web application firewalls), 84

warnings, in testing disaster recovery, 99

waste, 159-160

web application firewalls (WAF), 84

web sequence diagrams, 37

WIIFM (“What’s in it for me?”), 223

Wild West antipattern, 63

WorkSpaces (Amazon), 172

WSO2 Micro Integrator, 31

X
x86 platforms and deploying, 27

Index290

	Cover
	Red Hat
	Copyright
	Table of Contents
	Preface
	O’Reilly Online Learning
	How to Contact Us

	Part I. Fundamentals
	Chapter 1. What Is the Cloud?
	Nathen Harvey

	Chapter 2. Why the Cloud?
	Nathen Harvey
	Understand the Role of Technology
	Automate the Cloud
	Measure Progress
	Getting Started > Getting Finished

	Chapter 3. Three Keys to Making the Right Multicloud Decisions
	Brendan O’Leary

	Chapter 4. Use Managed Services—Please
	Dan Moore

	Chapter 5. Cloud for Good Should Be Your Next Project
	Delali Dzirasa

	Chapter 6. A Cloud Computing Vocabulary
	Jonathan Buck

	Chapter 7. Why Every Engineer Should Be a Cloud Engineer
	Michelle Brenner

	Chapter 8. Managing Up: Engaging with Executives on the Cloud
	Reza Salari

	Part II. Architecture
	Chapter 9. The Future of Containers: What’s Next?
	Chris Hickman
	MicroVMs
	Unikernels
	So, What’s Next?

	Chapter 10. Understanding Scalability
	Duncan Mackenzie
	Scaling Options
	Keep Scalability in Mind, but Don’t Overdo It

	Chapter 11. Don’t Think of Services, Think of Capabilities
	Haishi Bai

	Chapter 12. You Can Cloudify Your Monolith
	Jake Echanove

	Chapter 13. Integrating Microservices in Cloud Native Architecture
	Kasun Indrasiri

	Chapter 14. Containers Aren’t Magic
	Katie McLaughlin

	Chapter 15. Your CIO Wants to Replatform Only Once
	Kendall Miller

	Chapter 16. Practice Visualizing Distributed Systems
	Kim Schlesinger

	Chapter 17. Know Where to Scale
	Lisa Huynh
	Vertical Scaling
	Horizontal Scaling
	Conclusion

	Chapter 18. Serverless Bad Practices
	Manasés Jesús Galindo Bello
	Deploying a Lot of Functions
	Calling a Function Synchronously
	Calling a Function Asynchronously
	Employing Many Libraries
	Using Many Technologies
	Not Documenting Functions

	Chapter 19. Getting Started with AWS Lambda
	Marko Sluga
	Building an Event Handler and Testing the Lambda Function

	Chapter 20. It’s OK if You’re Not Running Kubernetes
	Mattias Geniar
	The Media Tells Us Only Half the Truth
	There’s Still Much to Improve on the Old and Boring Side of Technology
	But Don’t Sit Still

	Chapter 21. Know Thy Topology
	Nikhil Nanivadekar
	Modularity
	Deployment Strategy
	Datacenter Affinity

	Chapter 22. System Fundamentals Will Still Bite You
	Noah Abrahams

	Chapter 23. Cloud Processing Is Not About Speed
	Rustem Feyzkhanov

	Chapter 24. How Serverless Simplifies the Developer Experience
	Wietse Venema

	Part III. Migration
	Chapter 25. People Will Expect Things—Help Them Expect Right
	Dave Stanke

	Chapter 26. Failing a Cloud Migration
	Lee Atchison
	Mistake 1: Not Optimizing for the Cloud
	Mistake 2: Lack of Architectural Strategy

	Chapter 27. Optimizing Processes for the Cloud: Patterns and Antipatterns
	Mike Kavis
	Antipattern 1: The Wild West
	Antipattern 2: Command and Control
	Avoiding Antipatterns

	Chapter 28. Why the Lift-and-Shift Model Is Unlikely to Succeed
	Mike Silverman

	Part IV. Security and Compliance
	Chapter 29. Security at Cloud Native Speed
	Chris Short
	Struggles
	Velocity
	Continuous Security
	Platform Security
	Speed Makes Us Safer

	Chapter 30. Essentials of Modern Cloud Governance
	Derek Martin
	Subscriptions Matter
	The Network Has to Come First
	Security Is Essential
	Automation Is Required

	Chapter 31. Know Where the Secrets Are Kept and How
	Emmanuel Apau
	How Do We Share Secrets Between the Infrastructure and the Applications?
	How Do We Audit Our Secrets?
	How Do We Share Secrets Among Users?
	Best Practices

	Chapter 32. Don’t SSH into Production
	Fernando Duran

	Chapter 33. Identity and Access Management in Cloud Computing
	Isuru J. Ranawaka

	Chapter 34. Treat Your Cloud Environment as if It Were On Premises
	Iyana Garry

	Chapter 35. You Can’t Get Information Security Right Without Getting Identity Right
	Sarah Cecchetti

	Chapter 36. Why Are Good AWS Security Policies So Difficult?
	Stephen Kuenzli
	The AWS Security Model Is Powerful but Complex
	How Policies Are Evaluated
	Cloud Deployments Change Rapidly
	Summary

	Chapter 37. Side Channels and Covert Communications in Cloud Environments
	Will Deane

	Part V. Operations and Reliability
	Chapter 38. When in Doubt, Test It Out
	Dan Moore

	Chapter 39. Never Take a Single Region Dependency
	Derek Martin

	Chapter 40. Test Your Infrastructure with Game Days
	Fernando Duran

	Chapter 41. Improve Your Monitoring with Visualizations and Dashboards
	Jason Katzer

	Chapter 42. REvisiting the Rs of SRE
	J. Paul Reed

	Chapter 43. The Power of Vulnerability
	Ken Broeren

	Chapter 44. The Basics of Service-Level Objectives
	Kit Merker,
Brian Singer,
and Alex Nauda
	What Are SLOs?
	SLOs: The Cloud Engineer’s Best Friend
	Where Do You Start?

	Chapter 45. Oh, No: No Logs
	Laura Santamaria

	Chapter 46. Use Checklists to Manage Risk
	Lisa Huynh

	Chapter 47. Everything Is a DNS Problem: How to (Im)prove
	Michael Friedrich

	Chapter 48. What’s the Time?
	Nikhil Nanivadekar

	Chapter 49. Monitor Your Model Dependencies!
	Ori Cohen

	Chapter 50. There’s No Such Thing as a Development Environment
	Peter McCool

	Chapter 51. Incident Analysis and Chaos Engineering: Complementary Practices
	Ryan Frantz
	Incident Analysis
	Chaos Engineering
	Incident Analysis or Chaos Engineering
	Recouping our Investments
	A Vision for the Future

	Chapter 52. How Should I Organize My AWS Accounts?
	Stephen Kuenzli

	Chapter 53. Resiliency and Scalability Are Key
	Tidjani Belmansour

	Chapter 54. Monitor, You Will
	Tidjani Belmansour
	What Is Monitoring and Why Should We Care?
	Is Monitoring Required Only for Cloud-Based Applications?
	What Should We Monitor?
	Monitoring and Dashboarding
	We Should Design Our Applications for Monitoring from the Start

	Chapter 55. Reliable Systems Don’t Happen by Accident
	Zach Thomas
	The Architecture Diagram Is Also a Map of Failure Modes
	Asynchronous Communication Is a Friend of Cloud Reliability
	Exercise Adverse Conditions

	Chapter 56. What Is Toil, and Why Are SREs Obsessed with It?
	Zachary Nickens

	Part VI. Software Development
	Chapter 57. The Cloud Doesn’t Care if It Works on Your Machine
	Alessandro Diaferia

	Chapter 58. KISS It
	Chris Proto

	Chapter 59. Maintaining Service Levels with Feature Flags
	Dawn Parzych

	Chapter 60. Working Upstream
	Eric Sorenson
	Survey the Landscape
	Get Internal Approval
	Join the Community
	Design First, Then Code
	Happy Upstreaming!

	Chapter 61. Do More with Less
	Ivan Krnić

	Chapter 62. Everything Is Just Ones and Zeros
	Lukas Ruebbelke

	Chapter 63. Be Prepared to Repeat
	Ricardo Miranda
	Strategies to Cope with Duplicate Messages
	Stateless Consumers
	Keeping State
	Conclusions

	Chapter 64. Your Greatest Products Are Not the Applications and Services You Produce
	Ryan Bell

	Chapter 65. Avoid Big Rewrites
	Simon Aronsson
	Step 1: Be Realistic
	Step 2: Utilize the Strangler Pattern
	Step 3: Repeat

	Chapter 66. Lean QA: The QA Evolving in the DevOps World
	Theresa Neate
	Beware the Cargo Cult
	Waste
	QA Is Feedback
	Early Feedback
	Lean QA

	Chapter 67. Source Code Management for Software Delivery
	Tiffany Jachja
	Understanding Version Control
	What Is Git?

	Part VII. Cloud Economics and Measuring Spend
	Chapter 68. FinOps: How Cloud Finance Management Can Save Your Cloud Program from Extinction
	Deepak Ramchandani Vensi
	What Is FinOps?
	How Do You Get Started with FinOps?
	Summary

	Chapter 69. How Economies of Scale Work in the Cloud
	Jon Moore

	Chapter 70. Managing Network Transit Costs in the Cloud
	Ken Corless

	Chapter 71. Managing the Cloud Migration Cost Spike
	Manjeet Dadyala

	Chapter 72. Damn It, Jim! I’m a Cloud Engineer, Not an Accountant!
	Michael Winslow

	Chapter 73. Effectively Monitoring Cloud Services Requires Planning
	Scott Pantall

	Part VIII. Automation
	Chapter 74. Principles, Patterns, and Practices for Effective Infrastructure as Code
	Adarsh Shah
	Key Principles
	Principles and Practices

	Chapter 75. Red, Green, Refactor for Infrastructure
	Annie Hedgpeth

	Chapter 76. Automate or Not-o-Mate?
	Judy Johnson

	Chapter 77. Beyond the Portal: Manage Your Cloud with the CLI
	Marcello Marrocos

	Chapter 78. Treat Your Infrastructure like Software
	Zachary Nickens

	Part IX. Data
	Chapter 79. So You Want to Migrate Oracle Database into AWS Cloud?
	Asha Kalburgi
	Migration of Database
	Helpful Tools

	Chapter 80. DataOps: DevOps for Data Management
	Banjo Obayomi
	Reproducible Data
	Analytics as Code
	Data as a Platform

	Chapter 81. Data Gravity: The Importance of Data Management in the Cloud
	Geoff Hughes
	Data Availability
	Disaster Recovery
	Data Retention
	Data Gravity

	Part X. Networking
	Chapter 82. Even in the Cloud, the Network Is the Foundation
	David Murray

	Chapter 83. Networking First
	Derek Martin

	Chapter 84. Handling Network Failures in the Cloud
	Shayon Mukherjee

	Part XI. Organizational Culture
	Chapter 85. Silos by Any Other Name
	Brittany Woods

	Chapter 86. Focus on Your Team, Not on the Cost
	Guillaume Blaquiere

	Chapter 87. Cloud Engineering Is About Culture, Not Containers
	Holly Cummins

	Chapter 88. The Importance of Keeping Working Systems Working
	Jan Urbański

	Chapter 89. Effectively Navigating Organizational Politics
	Joshua Zimmerman
	Delegation
	Committees
	Soft Decisions

	Chapter 90. The Cloud Is Not About the Cloud
	Ken Corless

	Chapter 91. The Cloud Is Bigger than IT: Enterprise-Wide Training Strategies
	Mike Kavis

	Chapter 92. Systems Thinking and the Support Pager
	Theresa Neate
	There Are Always Consequences
	Systems Thinking in Teams
	Systems Thinking in Application Support
	It All Dovetails

	Chapter 93. Curating a DevOps Culture and Experience
	Tiffany Jachja
	Define Your Target Outcomes
	Safe Environments
	Architect Your Technology

	Part XII. Personal and Professional Development
	Chapter 94. Read the Documentation—Then Reread It
	Jennine Townsend

	Chapter 95. Stay Curious
	Laziz Turakulov

	Chapter 96. Empathy as Code
	Nirmal Mehta
	Empathy as Code
	A Sampling of Decision-Making Techniques

	Chapter 97. From Zero to Cloud Engineer in Less Than a Year
	Rachel Sweeney

	Contributors
	Adarsh Shah
	Alessandro Diaferia
	Alex Nauda
	Annie Hedgpeth
	Asha Kalburgi
	Banjo Obayomi
	Brendan O’Leary
	Brian Singer
	Brittany Woods
	Chris Hickman
	Chris Proto
	Chris Short
	Dan Moore
	Dave Stanke
	David Murray
	Dawn Parzych
	Deepak Ramchandani Vensi
	Delali Dzirasa
	Derek Martin
	Duncan Mackenzie
	Emily Freeman
	Emmanuel Apau
	Eric Sorenson
	Fernando Duran
	Geoff Hughes
	Guillaume Blaquiere
	Haishi Bai
	Holly Cummins
	Isuru J. Ranawaka
	Ivan Krnić
	Iyana Garry
	J. Paul Reed
	Jake Echanove
	Jan Urbański
	Jason Katzer
	Jennine Townsend
	Jon Moore
	Jonathan Buck
	Joshua Zimmerman
	Judy Johnson
	Kasun Indrasiri
	Katie McLaughlin
	Ken Broeren
	Ken Corless
	Kendall Miller
	Kim Schlesinger
	Kit Merker
	Laura Santamaria
	Laziz Turakulov
	Lee Atchison
	Lisa Huynh
	Lukas Ruebbelke
	Manasés Jesús Galindo Bello
	Manjeet Dadyala
	Marcello Marrocos
	Marko Sluga
	Mattias Geniar
	Michael Friedrich
	Michael Winslow
	Michelle Brenner
	Mike Kavis
	Mike Silverman
	Nathen Harvey
	Nikhil Nanivadekar
	Nirmal Mehta
	Noah Abrahams
	Ori Cohen
	Peter McCool
	Rachel Sweeney
	Reza Salari
	Ricardo Miranda
	Rustem Feyzkhanov
	Ryan Bell
	Ryan Frantz
	Sarah Cecchetti
	Scott Pantall
	Shayon Mukherjee
	Simon Aronsson
	Stephen Kuenzli
	Theresa Neate
	Tidjani Belmansour
	Tiffany Jachja
	Wietse Venema
	Will Deane
	Zach Thomas
	Zachary Nickens

	Index

