
Checklist

Creating a Kubernetes cluster in 16 steps
A Kubernetes cluster is a set of node machines—including a control plane and one or more
compute machines—for running containerized applications. While Kubernetes is a powerful tool for
building highly scalable systems, the technology is complex and setup can prove difficult. The
following 16 steps can help you configure your containers and Kubernetes clusters for production
traffic—and reduce the risk of misconfiguration.

redhat.com 

1  Use minimal base images
Containers are application stacks built into a system image. Everything
from your business logic to the kernel gets packed inside. Minimal
images strip out as much of the operating system (OS) as possible and
force you to add back any components you need. 

By including only the software you intend to use in your container, you
boost security and performance.

2  Use a high-availability registry 
Registries are repositories for images, making those images available
for download and launch. Since your cluster will rely on your registry to
launch newer versions of your software, any downtime will prevent
updates to Kubernetes services or microservices.

Red Hat® OpenShift® provides a built-in container image registry that
runs as a standard workload on the cluster. Most public cloud
providers, like Alibaba, AWS, Google, IBM, and Microsoft, also offer
private image registry services.

3  Use ImagePullSecrets to authenticate your
registry
ImagePullSecrets are Kubernetes objects that let your cluster
authenticate with your registry, so the registry can be selective about
who is able to download your images.

If your registry is exposed enough for your cluster to pull images from
it, then it needs authentication.

4  Isolate environments with namespaces
Namespaces are the most basic and powerful grouping mechanism in
Kubernetes. They work almost like virtual machine (VM) clusters. Most
objects in Kubernetes are limited to affecting a single namespace at
once. 

Namespaces provide strong isolation and are perfect for isolating
environments with different purposes. 

5  Organize your clusters with labels
Labels are the most basic and extensible way to organize your
Kubernetes cluster. They allow you to create arbitrary key:value pairs
that separate your Kubernetes objects. 

Kubernetes also uses labels for selection. Since they represent such an
open-ended type of organization, do your best to keep things simple,
and only create labels where you require the power of selection. 

6  Use annotations to track important system
changes
Annotations are arbitrary key-value metadata you can attach to your
pods, much like labels. However, Kubernetes does not read or handle
annotations, so the rules about what you can and cannot annotate a
pod with are fairly liberal, and they cannot be used for selection. 

Annotations in Kubernetes are a fairly powerless construct, but they
can be an asset to your developers and operations teams when used to
track important system changes.

facebook.com/redhatinc
@redhat

linkedin.com/company/red-hat

Checklist Creating a Kubernetes cluster in 16 steps 1

https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-cluster
https://www.redhat.com/
https://docs.openshift.com/container-platform/4.7/registry/registry-options.html
https://facebook.com/redhatinc
https://twitter.com/redhat
https://linkedin.com/company/red-hat
https://facebook.com/redhatinc
https://twitter.com/redhat
https://linkedin.com/company/red-hat


Checklist

redhat.com 

7  Implement access control using Kubernetes
RBAC
Role-based access control (RBAC) allows you to control who can view
or modify different aspects of your cluster. You can use RBAC to
launch a Kubernetes application programming interface (API) server.

8  Prevent risky behavior and configurations
using OPA Gatekeeper
Gatekeeper provides a Kubernetes admission controller built around
the Open Policy Agent (OPA) engine to integrate OPA and the
Kubernetes API service. OPA is useful for Kubernetes cluster security
compliance and for practical resource configuration management. The
Gatekeeper controller constantly monitors existing cluster objects to
detect policy violations. Providing enforceable standard policies across
ecosystems ensures consistent security and compliance.

9  Implement network control and firewalls
using network policies
Network policies are objects that allow you to explicitly state which
traffic is permitted. With these policies in place, Kubernetes will block
all other nonconforming traffic. By default, Kubernetes allows open
communication between all services. Leaving this “default open”
configuration in place can put sensitive information at risk.

10  Use Kubernetes Secrets to store and
manage sensitive information
Secrets are used to store sensitive data in Kubernetes, including
passwords, certificates, and tokens. Your services may need to
authenticate one another, other third-party services, or your users.
Avoid loading secrets as environment variables, and instead, mount
secrets into read-only volumes in your container.

11  Use an image scanner to identify and
remediate image vulnerabilities
Scanners inspect the components installed in your images, including
everything from the OS to your application stack. Scanners are useful
for finding vulnerabilities in the versions of software that your image
contains. You need to know where vulnerabilities reside in your system
so you know what images may need updating. 

12  Follow CI/CD methodologies
Continuous integration and continuous delivery (CI/CD) is the belief
that every modification committed to your codebase should add
incremental value and be production-ready. Following CI/CD helps
your engineering team keep quality top of mind. If a functionality
breaks, fixing it becomes an immediate priority for the whole team
because every subsequent change that relies on the broken commit
will also be broken. 

13  Use canary methodologies for rolling out
updates
A canary deployment is a way of bringing service changes from a
commit in your codebase to your users. You bring up a new instance
running your latest version, and you migrate your users to the new
instance slowly, gaining confidence in your updates over time, instead
of swapping over all at once. Using canary methodologies limits your
users’ exposure to issues. 

14  Implement monitoring and integrate it with
SIEM
Monitoring tracks and records what your services are doing. There are
two steps to successfully monitor a service—the code needs to be
instrumented, and the output of that instrumentation needs to be fed
somewhere for storage, retrieval, and analysis. How you perform
instrumentation is largely dependent on your toolchain. For storage,
consider a managed security information and event management
(SIEM) technology.

Checklist Creating a Kubernetes cluster in 16 steps 2

https://www.redhat.com/


Checklist

About Red Hat 

Red Hat helps customers standardize across environments, develop cloud-native applications, and integrate,
automate, secure, and manage complex environments with award-winning support, training, and consulting
services.

NORTH AMERICA 
1 888 REDHAT1 
www.redhat.com

EUROPE, MIDDLE
EAST, AND AFRICA 
00800 7334 2835 
europe@redhat.com

ASIA PACIFIC 
+65 6490 4200 
apac@redhat.com

LATIN AMERICA 
+54 11 4329 7300 
info-latam@redhat.com

Copyright © 2021 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries.

redhat.com 

15  Manage inter-service communication using
a service mesh
A service mesh is a way to manage your inter-service communications,
effectively creating a virtual network that you use when implementing
your services. Using a service mesh can alleviate some of the more
tedious aspects of managing a cluster, such as ensuring that
communications are properly encrypted. 

16  Use admission controllers to unlock
advanced features in Kubernetes
Admission controllers manage what is going into your cluster. They
allow you to set up webhooks that Kubernetes will consult during bring
up. There are two types of admission controllers: mutating and
validating. Mutating admission controllers alter the configuration files
of the deployment before it is launched. Validating admission
controllers get permission from your webhooks that a given
deployment is allowed to be launched.

Get started
Security platforms built to protect Kubernetes offer powerful security
and operational advantages. Kubernetes-native security applies
controls at the Kubernetes layer, ensuring consistency, automation, and
scale. Organizations successfully deploy security as code with security
that is built in, not bolted on.

Read the full whitepaper to learn more about each of these steps—and
get tutorials on how to implement them.

facebook.com/redhatinc
@redhat

linkedin.com/company/red-hat

O-F29599
Checklist Creating a Kubernetes cluster in 16 steps 3

https://www.redhat.com/en
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
https://www.redhat.com/
http://www.redhat.com/en/resources/16-steps-to-production-ready-kubernetes-clusters-whitepaper
https://facebook.com/redhatinc
https://twitter.com/redhat
https://linkedin.com/company/red-hat
https://facebook.com/redhatinc
https://twitter.com/redhat
https://linkedin.com/company/red-hat

