Following the support of a multi-front-end architecture in libabigail 2.2, version 2.3 of that Application Binary Interface analysis library added support of the BPF Type Format. This article presents a high-level view of how the BTF support was implemented.
Using the multi-front-end architecture of libabigail
In libabigail, a front end is the component that reads a particular type of information usually embedded in a binary and builds an intermediate representation of its Application Binary Interface (ABI).
Each front end understands the specifics of a particular format of type information. For instance, the DWARF front end reads the type information from the DWARF debug data embedded in binaries in the ELF format.
Adding support for the BTF debug information involved writing a new front end dedicated to reading BTF type information from an ELF binary.
The BTF front end is thus instantiated to analyze binaries that contain BTF debug info. Once the intermediate representation of the ABI is built, it is handed over to the existing middle-end for processing.
Organization of the BTF front end
The BTF front end is represented by a new implementation of the abigail::elf_based_reader interface. That implementation is instantiated by the abigail::btf::create_reader factory function. Client code of this function can thus use the BTF front end through the abigail::elf_based_reader abstract interface.
For the curious reader, the code of the BTF front end lies in the file abg-btf-reader.cc and uses the libbpf library to read the BTF type information from the ELF file.
Tools support
Various ABI analysis tools provided by the libabigail package have been adapted to support the new BTF front end.
Namely, abidiff, abipkgdiff, kmidiff, and abidw have all been adapted to support the new BTF format.
The –btf option forces any of these tools to use the BTF type information present in the input binary, or to fall back to using DWARF if no BTF debug information was found. By default, however, if the binary being analyzed is the Linux kernel and if the only debug information available is BTF, then the BTF front end is automatically used, even if the –btf option was not provided on the command line.
Usage example
Let’s write a first version of a simple function:
$ cat -n example-v0.c 1 struct S 2 { 3 int a; 4 char b; 5 }; 6 7 int 8 example_function(struct S *s) 9 { 10 return s->a; 11 } $
Now let’s compile that small example code using the GCC compiler and tell the compiler to emit BTF debug information:
$ gcc -c -gbtf example-v0.c $ ls example-v0.o example-v0.o $
Note how we use the -gbtf
switch to GCC. This instructs the compiler to emit debug information in the BTF format.
Let’s confirm that GCC hasn’t emitted any DWARF debug information using the eu-readelf
command, from the elfutils project:
$ eu-readelf --debug-dump=info example-v0.o eu-readelf: cannot get debug context descriptor: No DWARF information found $
Note how the eu-readelf hasn’t found any debug information.
Now let’s use the bpftool
command to confirm that some type information in the BTF format was emitted by GCC:
$ bpftool btf dump file example-v0.o [1] STRUCT 'S' size=8 vlen=2 'a' type_id=2 bits_offset=0 'b' type_id=3 bits_offset=32 [2] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED [3] INT 'char' size=1 bits_offset=0 nr_bits=8 encoding=SIGNED [4] FUNC_PROTO '(anon)' ret_type_id=2 vlen=1 's' type_id=5 [5] PTR '(anon)' type_id=1 [6] FUNC 'example_function' type_id=4 linkage=global $
Now we can use the abidw
from libabigail to serialize the ABI information constructed from the BTF in the binary:
$ /home/dodji/git/libabigail/master/build/tools/abidw --annotate example-v0.o <abi-corpus version='2.2' path='example-v0.o' architecture='elf-amd-x86_64'> <elf-function-symbols> <!-- example_function --> <elf-symbol name='example_function' type='func-type' binding='global-binding' visibility='default-visibility' is-defined='yes'/> </elf-function-symbols> <abi-instr address-size='64'> <!-- char --> <type-decl name='char' size-in-bits='8' id='type-id-1'/> <!-- int --> <type-decl name='int' size-in-bits='32' id='type-id-2'/> <!-- struct S --> <class-decl name='S' size-in-bits='64' is-struct='yes' visibility='default' id='type-id-3'> <data-member access='public' layout-offset-in-bits='0'> <!-- int S::a --> <var-decl name='a' type-id='type-id-2' visibility='default'/> </data-member> <data-member access='public' layout-offset-in-bits='32'> <!-- char S::b --> <var-decl name='b' type-id='type-id-1' visibility='default'/> </data-member> </class-decl> <!-- S* --> <pointer-type-def type-id='type-id-3' size-in-bits='64' id='type-id-4'/> <!-- int example_function(S*) --> <function-decl name='example_function' mangled-name='example_function' visibility='default' binding='global' size-in-bits='64' elf-symbol-id='example_function'> <!-- parameter of type 'S*' --> <parameter type-id='type-id-4' name='s'/> <!-- int --> <return type-id='type-id-2'/> </function-decl> <!-- int (S*) --> <function-type size-in-bits='64' id='type-id-5'> <!-- parameter of type 'S*' --> <parameter type-id='type-id-4' name='s'/> <!-- int --> <return type-id='type-id-2'/> </function-type> </abi-instr> </abi-corpus> $
Here we see that abidw
was able to instantiate the BTF front end, construct an intermediate representation of the ABI of the example-v0.c
program, and serialize it back into the ABIXML format.
Finally, let’s modify the example-v0.c
program to change its ABI and see what the abidiff
program tells us by looking at the BTF information:
$ cat -n example-v1.c 1 struct S 2 { 3 int a; 4 char b; 5 int c; 6 }; 7 8 int 9 example_function(struct S *s, 10 int b) 11 { 12 return s->a; 13 } $
For brevity, here is a diff of the change to the source code:
$ diff -u example-v0.c example-v1.c --- example-v0.c 2023-07-23 19:30:10.309346718 +0200 +++ example-v1.c 2023-07-23 19:28:13.467415606 +0200 @@ -2,10 +2,12 @@ { int a; char b; + int c; }; int -example_function(struct S *s) +example_function(struct S *s, + int b) { return s->a; } $
Let’s compile it and let abidiff
analyze the changes between example-v0.o
and example-v1.o
:
$ gcc -c -gbtf example-v1.c $ /home/dodji/git/libabigail/master/build/tools/abidiff example-v0.o example-v1.o Functions changes summary: 0 Removed, 1 Changed, 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C] 'function int example_function(S*)' has some indirect sub-type changes: parameter 1 of type 'S*' has sub-type changes: in pointed to type 'struct S': type size changed from 64 to 96 (in bits) 1 data member insertion: 'int c', at offset 64 (in bits) parameter 2 of type 'int' was added $
Conclusion
As this article shows, the BTF front end enables the ABI analysis of binaries accompanied with type information in the BTF format, like the Linux Kernel, in the absence of type information in the DWARF format.
Because the type information in the BTF format is de-duplicated, the ABI analysis performed by libabigail should be much faster using the BTF front end than the default DWARF front end.
To learn more about the libabigail framework, engage with its development community either by joining the mailing list or via our IRC channel at irc://oftc.net#libabigail.
Sull'autore
Dodji Seketeli is a member of the RHEL Platform Toolchain Organization at Red Hat. His main interests are currently around static analysis tools for Application Binary Interfaces of binaries in the ELF format.
Altri risultati simili a questo
Ricerca per canale
Automazione
Novità sull'automazione IT di tecnologie, team e ambienti
Intelligenza artificiale
Aggiornamenti sulle piattaforme che consentono alle aziende di eseguire carichi di lavoro IA ovunque
Hybrid cloud open source
Scopri come affrontare il futuro in modo più agile grazie al cloud ibrido
Sicurezza
Le ultime novità sulle nostre soluzioni per ridurre i rischi nelle tecnologie e negli ambienti
Edge computing
Aggiornamenti sulle piattaforme che semplificano l'operatività edge
Infrastruttura
Le ultime novità sulla piattaforma Linux aziendale leader a livello mondiale
Applicazioni
Approfondimenti sulle nostre soluzioni alle sfide applicative più difficili
Serie originali
Raccontiamo le interessanti storie di leader e creatori di tecnologie pensate per le aziende
Prodotti
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Servizi cloud
- Scopri tutti i prodotti
Strumenti
- Formazione e certificazioni
- Il mio account
- Supporto clienti
- Risorse per sviluppatori
- Trova un partner
- Red Hat Ecosystem Catalog
- Calcola il valore delle soluzioni Red Hat
- Documentazione
Prova, acquista, vendi
Comunica
- Contatta l'ufficio vendite
- Contatta l'assistenza clienti
- Contatta un esperto della formazione
- Social media
Informazioni su Red Hat
Red Hat è leader mondiale nella fornitura di soluzioni open source per le aziende, tra cui Linux, Kubernetes, container e soluzioni cloud. Le nostre soluzioni open source, rese sicure per un uso aziendale, consentono di operare su più piattaforme e ambienti, dal datacenter centrale all'edge della rete.
Seleziona la tua lingua
Red Hat legal and privacy links
- Informazioni su Red Hat
- Opportunità di lavoro
- Eventi
- Sedi
- Contattaci
- Blog di Red Hat
- Diversità, equità e inclusione
- Cool Stuff Store
- Red Hat Summit