This article was originally published on the Red Hat Customer Portal. The information may no longer be current.
At least historically, misuse of functions like strcpy
, strcat
, and sprintf
was a common source of buffer overflow vulnerabilities. Therefore, in 1997, the Single UNIX Specification, Version 2, included a new interface for string construction that provided an explicit length of the output string: snprintf
. This function can be used for string construction with explicit length checking.
Originally, it could be used in the following way:
/* buff is a pointer to a buffer of blen characters. */ /* Note well: This example is now incorrect. */ char *cp = buff; if ((n = snprintf(cp, blen, "AF=%d ", sau->soa.sa_family)) < 0) { Warn1("sockaddr_info(): buffer too short ("F_Zu")", blen); *buff = ''; return buff; } cp += n, blen -= n;
This example is based on socat, but this coding pattern is still fairly common. The socat case is likely harmless as far as potential security impact is concerned.
The code in the above example avoids writing too much data to the buff
pointer because early snprintf
implementations returned -1 if the output string was truncated, based on this requirement from the Single UNIX Specification, Version 2:
Upon successful completion, these functions return the number of bytes transmitted excluding the terminating null in the case of sprintf() or snprintf() or a negative value if an output error was encountered.
However, the example code is insecure when compiled on current systems.
The specification quoted above is still ambiguous with regard to truncation, something that would be addressed during the standardization of the next version of C, ISO C99. As a result of that, in 2002, version 3 of the Single UNIX Specification was published, aligning the snprintf
behavior with ISO C99:
Upon successful completion, the snprintf() function shall return the number of bytes that would be written to s had n been sufficiently large excluding the terminating null byte.
There is a remaining discrepancy between ISO C99 and POSIX regarding the EOVERFLOW
return value, but we will ignore that. As far as the history can be retraced now, the GNU C Library adopted the ISO C99 behavior some time in 1998.
After this specification change, truncated output does not result in an error return value any more. Even worse, the result value exceeds the passed buffer length, making the pointer and length adjustment in the example invalid:
cp += n, blen -= n;
If the cp
pointer and the blen
argument are used in subsequent snprintf
calls (which is often the case when the result from snprintf
is used in pointer arithmetic), the buffer overflow vulnerability that snprintf
was supposed to deal with resurfaces: cp
points outside of the original buffer, and blen
wraps around (after the conversion in size_t
), resulting in a value that does not stop snprintf
from writing to the invalid pointer.
Covering this error condition is somewhat difficult:
char *cp = buff; n = snprintf(cp, blen, "AF=%d ", sau->soa.sa_family) if (n < 0) { Warn1("sockaddr_info(): snprintf failed: %s", strerror(errno)); *buff = ''; return buff; } else if (n >= blen) { Warn1("sockaddr_info(): buffer too short ("F_Zu")", blen); *buff = ''; return buff; } cp += n, blen -= n;
As a more convenient substitute, it is possible to ignore the return value from snprintf
altogether, and acquire the number of written characters using strlen
:
char *cp = buff; assert(blen >= 1); *buff = 0; snprintf(cp, blen, "AF=%d ", sau->soa.sa_family) blen -= strlen(cp); cp += strlen(cp);
This code assumes that the snprintf
implementation does not write an unterminated string to the destination buffer on error, which is quite reasonable as far as such assumptions go. The value of strlen(cp)
will always be less than the value of blen
, so a subsequent snprintf
will have room to write the null terminator.
Enhancing -D_FORTIFY_SOURCE=2
to cover the original example code reliably is difficult because GCC cannot track the size information through the pointer arithmetic following the snprintf
call, so it is not available to subsequent snprintf
calls. Another option would be to have snprintf
abort in fortify mode when the buffer length passed in is INT_MAX
or larger. Adding logic to GCC to deal with this snprintf
oddity specifically is a bit dubious, considering that this only deals with misuse of a single library function.
Curiously, snprintf
is not the only function that suffered from an interface change as the result of standardization. Another example is strerror_r
, the thread-safe variant of strerror
. Even today, it exists in two variants in the GNU C library, one that returns a pointer value (used with -D_GNU_SOURCE
) and one that returns an int
(the standardized version).
One can only hope that with increased openness of standardization processes and more participation from the free software community in the creation of mostly proprietary standard documents, future recurrences of this kind of problem can be avoided, for example by standardizing interfaces with conflicting implementations under completely new names.
About the author
Browse by channel
Automation
The latest on IT automation for tech, teams, and environments
Artificial intelligence
Updates on the platforms that free customers to run AI workloads anywhere
Open hybrid cloud
Explore how we build a more flexible future with hybrid cloud
Security
The latest on how we reduce risks across environments and technologies
Edge computing
Updates on the platforms that simplify operations at the edge
Infrastructure
The latest on the world’s leading enterprise Linux platform
Applications
Inside our solutions to the toughest application challenges
Original shows
Entertaining stories from the makers and leaders in enterprise tech
Products
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Cloud services
- See all products
Tools
- Training and certification
- My account
- Customer support
- Developer resources
- Find a partner
- Red Hat Ecosystem Catalog
- Red Hat value calculator
- Documentation
Try, buy, & sell
Communicate
About Red Hat
We’re the world’s leading provider of enterprise open source solutions—including Linux, cloud, container, and Kubernetes. We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.
Select a language
Red Hat legal and privacy links
- About Red Hat
- Jobs
- Events
- Locations
- Contact Red Hat
- Red Hat Blog
- Diversity, equity, and inclusion
- Cool Stuff Store
- Red Hat Summit