This article was originally published on the Red Hat Customer Portal. The information may no longer be current.
At least historically, misuse of functions like strcpy
, strcat
, and sprintf
was a common source of buffer overflow vulnerabilities. Therefore, in 1997, the Single UNIX Specification, Version 2, included a new interface for string construction that provided an explicit length of the output string: snprintf
. This function can be used for string construction with explicit length checking.
Originally, it could be used in the following way:
/* buff is a pointer to a buffer of blen characters. */ /* Note well: This example is now incorrect. */ char *cp = buff; if ((n = snprintf(cp, blen, "AF=%d ", sau->soa.sa_family)) < 0) { Warn1("sockaddr_info(): buffer too short ("F_Zu")", blen); *buff = ''; return buff; } cp += n, blen -= n;
This example is based on socat, but this coding pattern is still fairly common. The socat case is likely harmless as far as potential security impact is concerned.
The code in the above example avoids writing too much data to the buff
pointer because early snprintf
implementations returned -1 if the output string was truncated, based on this requirement from the Single UNIX Specification, Version 2:
Upon successful completion, these functions return the number of bytes transmitted excluding the terminating null in the case of sprintf() or snprintf() or a negative value if an output error was encountered.
However, the example code is insecure when compiled on current systems.
The specification quoted above is still ambiguous with regard to truncation, something that would be addressed during the standardization of the next version of C, ISO C99. As a result of that, in 2002, version 3 of the Single UNIX Specification was published, aligning the snprintf
behavior with ISO C99:
Upon successful completion, the snprintf() function shall return the number of bytes that would be written to s had n been sufficiently large excluding the terminating null byte.
There is a remaining discrepancy between ISO C99 and POSIX regarding the EOVERFLOW
return value, but we will ignore that. As far as the history can be retraced now, the GNU C Library adopted the ISO C99 behavior some time in 1998.
After this specification change, truncated output does not result in an error return value any more. Even worse, the result value exceeds the passed buffer length, making the pointer and length adjustment in the example invalid:
cp += n, blen -= n;
If the cp
pointer and the blen
argument are used in subsequent snprintf
calls (which is often the case when the result from snprintf
is used in pointer arithmetic), the buffer overflow vulnerability that snprintf
was supposed to deal with resurfaces: cp
points outside of the original buffer, and blen
wraps around (after the conversion in size_t
), resulting in a value that does not stop snprintf
from writing to the invalid pointer.
Covering this error condition is somewhat difficult:
char *cp = buff; n = snprintf(cp, blen, "AF=%d ", sau->soa.sa_family) if (n < 0) { Warn1("sockaddr_info(): snprintf failed: %s", strerror(errno)); *buff = ''; return buff; } else if (n >= blen) { Warn1("sockaddr_info(): buffer too short ("F_Zu")", blen); *buff = ''; return buff; } cp += n, blen -= n;
As a more convenient substitute, it is possible to ignore the return value from snprintf
altogether, and acquire the number of written characters using strlen
:
char *cp = buff; assert(blen >= 1); *buff = 0; snprintf(cp, blen, "AF=%d ", sau->soa.sa_family) blen -= strlen(cp); cp += strlen(cp);
This code assumes that the snprintf
implementation does not write an unterminated string to the destination buffer on error, which is quite reasonable as far as such assumptions go. The value of strlen(cp)
will always be less than the value of blen
, so a subsequent snprintf
will have room to write the null terminator.
Enhancing -D_FORTIFY_SOURCE=2
to cover the original example code reliably is difficult because GCC cannot track the size information through the pointer arithmetic following the snprintf
call, so it is not available to subsequent snprintf
calls. Another option would be to have snprintf
abort in fortify mode when the buffer length passed in is INT_MAX
or larger. Adding logic to GCC to deal with this snprintf
oddity specifically is a bit dubious, considering that this only deals with misuse of a single library function.
Curiously, snprintf
is not the only function that suffered from an interface change as the result of standardization. Another example is strerror_r
, the thread-safe variant of strerror
. Even today, it exists in two variants in the GNU C library, one that returns a pointer value (used with -D_GNU_SOURCE
) and one that returns an int
(the standardized version).
One can only hope that with increased openness of standardization processes and more participation from the free software community in the creation of mostly proprietary standard documents, future recurrences of this kind of problem can be avoided, for example by standardizing interfaces with conflicting implementations under completely new names.
Sull'autore
Ricerca per canale
Automazione
Novità sull'automazione IT di tecnologie, team e ambienti
Intelligenza artificiale
Aggiornamenti sulle piattaforme che consentono alle aziende di eseguire carichi di lavoro IA ovunque
Hybrid cloud open source
Scopri come affrontare il futuro in modo più agile grazie al cloud ibrido
Sicurezza
Le ultime novità sulle nostre soluzioni per ridurre i rischi nelle tecnologie e negli ambienti
Edge computing
Aggiornamenti sulle piattaforme che semplificano l'operatività edge
Infrastruttura
Le ultime novità sulla piattaforma Linux aziendale leader a livello mondiale
Applicazioni
Approfondimenti sulle nostre soluzioni alle sfide applicative più difficili
Serie originali
Raccontiamo le interessanti storie di leader e creatori di tecnologie pensate per le aziende
Prodotti
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Servizi cloud
- Scopri tutti i prodotti
Strumenti
- Formazione e certificazioni
- Il mio account
- Supporto clienti
- Risorse per sviluppatori
- Trova un partner
- Red Hat Ecosystem Catalog
- Calcola il valore delle soluzioni Red Hat
- Documentazione
Prova, acquista, vendi
Comunica
- Contatta l'ufficio vendite
- Contatta l'assistenza clienti
- Contatta un esperto della formazione
- Social media
Informazioni su Red Hat
Red Hat è leader mondiale nella fornitura di soluzioni open source per le aziende, tra cui Linux, Kubernetes, container e soluzioni cloud. Le nostre soluzioni open source, rese sicure per un uso aziendale, consentono di operare su più piattaforme e ambienti, dal datacenter centrale all'edge della rete.
Seleziona la tua lingua
Red Hat legal and privacy links
- Informazioni su Red Hat
- Opportunità di lavoro
- Eventi
- Sedi
- Contattaci
- Blog di Red Hat
- Diversità, equità e inclusione
- Cool Stuff Store
- Red Hat Summit