Red Hat OpenShift makes sense in a lot of contexts. It's one of the most comprehensive solutions for developing and running Kubernetes applications and the frameworks that help build them. If you can think of it, you can likely develop and run it on OpenShift in some way, shape, or form.
Machine Learning Operations or MLOps is a term for operationalizing machine learning (ML) for DevOps and ML engineers. There are many solutions out there for making MLOps easier. For instance, Red Hat has OpenShift Data Science. However, we encourage those in the community who have other innovative ways of doing things to bring those solutions to OpenShift as well. It's designed from the ground up to facilitate that.
This article looks at ZenML. As described on the project page, it is:
an extensible, open-source MLOps framework for creating portable, production-ready machine learning pipelines. By decoupling infrastructure from code, ZenML enables developers across your organization to collaborate more effectively as they develop to production.
It's a perfect candidate to run in the OpenShift ecosystem.
This exercise uses the OpenShift command line utility oc to deploy the ZenML Server via a Docker build strategy to build a zenml-server image. This way, as the ZenML open source project continues to evolve, you'll be able to grow with it and hopefully contribute to the project in a meaningful way as you learn more about it.
Get started
This exercise assumes that you have an existing OpenShift cluster and are logged in via the command line using oc. If you need help getting started with OpenShift, please visit Red Hat OpenShift Getting Started. Once you've got an environment up and running, move on to step 1 below.
Create a new project:
oc new-project zenml
Create a new application:
oc new-app --strategy=docker --binary --name=zenml
Open up your favorite editor and create a Dockerfile with the following contents:
ARG PYTHON_VERSION=3.11 ARG ZENML_VERSION="" ARG ZENML_NIGHTLY="false" # Use UBI 8 FROM registry.access.redhat.com/ubi8/ubi AS base # Install Python and update system packages RUN yum install -y python311; yum clean all USER 0 # Set environment variables ENV PIP_DEFAULT_TIMEOUT=100 \ PIP_DISABLE_PIP_VERSION_CHECK=1 \ PIP_NO_CACHE_DIR=1 WORKDIR /zenml FROM base AS builder ARG VIRTUAL_ENV=/opt/venv ARG ZENML_VERSION ARG ZENML_NIGHTLY="false" ENV VIRTUAL_ENV=$VIRTUAL_ENV RUN python3 -m venv $VIRTUAL_ENV ENV PATH="$VIRTUAL_ENV/bin:$PATH" FROM builder as client-builder ARG ZENML_VERSION ARG ZENML_NIGHTLY="false" RUN if [ "$ZENML_NIGHTLY" = "true" ]; then \ PACKAGE_NAME="zenml-nightly"; \ else \ PACKAGE_NAME="zenml"; \ fi \ && pip install --upgrade pip \ && pip install ${PACKAGE_NAME}${ZENML_VERSION:+==$ZENML_VERSION} \ && pip freeze > requirements.txt FROM builder as server-builder ARG ZENML_VERSION ARG ZENML_NIGHTLY="false" RUN if [ "$ZENML_NIGHTLY" = "true" ]; then \ PACKAGE_NAME="zenml-nightly"; \ else \ PACKAGE_NAME="zenml"; \ fi \ && pip install --upgrade pip \ && pip install "${PACKAGE_NAME}[server,secrets-aws,secrets-gcp,secrets-azure,secrets-hashicorp,s3fs,gcsfs,adlfs,connectors-aws,connectors-gcp,connectors-azure]${ZENML_VERSION:+==$ZENML_VERSION}" \ && pip freeze > requirements.txt FROM base as client ARG VIRTUAL_ENV=/opt/venv ENV PYTHONUNBUFFERED=0 \ PYTHONFAULTHANDLER=1 \ PYTHONHASHSEED=random \ VIRTUAL_ENV=$VIRTUAL_ENV \ ZENML_CONTAINER=1 WORKDIR /zenml COPY --from=client-builder /opt/venv /opt/venv COPY --from=client-builder /zenml/requirements.txt /zenml/requirements.txt ENV PATH="$VIRTUAL_ENV/bin:$PATH" FROM base AS server ARG VIRTUAL_ENV=/opt/venv ARG USERNAME=zenml ARG USER_UID=1000 ARG USER_GID=$USER_UID ENV PYTHONUNBUFFERED=1 \ PYTHONFAULTHANDLER=1 \ PYTHONHASHSEED=random \ VIRTUAL_ENV=$VIRTUAL_ENV \ ZENML_CONTAINER=1 \ ZENML_CONFIG_PATH=/zenml/.zenconfig \ ZENML_DEBUG=false \ ZENML_ANALYTICS_OPT_IN=true WORKDIR /zenml COPY --from=server-builder /opt/venv /opt/venv COPY --from=server-builder /zenml/requirements.txt /zenml/requirements.txt RUN groupadd --gid $USER_GID $USERNAME \ && useradd --uid $USER_UID --gid $USER_GID -m $USERNAME \ && mkdir -p /zenml/.zenconfig/local_stores/default_zen_store \ && chgrp -R 0 /zenml \ && chmod -R g=u /zenml ENV PATH="$VIRTUAL_ENV/bin:/home/$USERNAME/.local/bin:$PATH" USER $USERNAME EXPOSE 8080 ENTRYPOINT ["uvicorn", "zenml.zen_server.zen_server_api:app", "--log-level", "debug", "--no-server-header", "--proxy-headers", "--forwarded-allow-ips", "*"] CMD ["--port", "8080", "--host", "0.0.0.0"]
Now use that Dockerfile to build an image and deploy it to a pod in OpenShift:
oc start-build zenml --from-dir <path to Dockerfile>
Wait for the build to complete. You can check it by executing the following command:
oc logs build/zenml-1 -f
You can now create the service and associated routes to access the ZenML Server.
First, create a service:
oc expose deployment/zenml --port 8080
Next, create a route to access the ZenML Server:
oc create route edge zenml --service=zenml --insecure-policy='Allow'
Now you can run the following command to see what you've created:
oc get svc,route
You should see something similar to this:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/zenml ClusterIP 172.30.38.137 <none> 8080/TCP 26s
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
route.route.openshift.io/zenml zenml-zenml.apps.cluster.example.com zenml <all> edge/Allow None
At this point, you can now access the ZenML Server Web UI via the OpenShift route you created in the previous step in the browser of your choice. For instance, I would use the following in my address bar:
http://zenml-zenml.apps.cluster.example.com
Once the login comes up, log in with Username "default" and leave the password blank. Then press the Log In button.

After providing your e-mail for ZenML (or not), move on to the next page and click on Pipelines and you should see a dashboard similar to this once you have done a run or two:


Simple
Congratulations! Now you have ZenML Server running on OpenShift. You can explore the ZenML open source project and all its possibilities on GitHub. Good luck. Have fun!
Want more?
Please let us know if you'd like to see more MLOps with OpenShift in the future. In the meantime, watch a couple of Red Hatters talk about MLOps over coffee:
OpenShift Coffee Break: MLOps with OpenShift
And if you're interested in getting some hands-on with Red Hat Open Data Science, check out this OpenShift Developer Sandbox activity:
How to create a natural language processing (NLP) application using OpenShift Data Science
You can also visit the upstream Open Data Hub to get more involved in the open source AI on Hybrid Cloud action.
Sobre o autor
Mais como este
Navegue por canal
Automação
Últimas novidades em automação de TI para empresas de tecnologia, equipes e ambientes
Inteligência artificial
Descubra as atualizações nas plataformas que proporcionam aos clientes executar suas cargas de trabalho de IA em qualquer ambiente
Nuvem híbrida aberta
Veja como construímos um futuro mais flexível com a nuvem híbrida
Segurança
Veja as últimas novidades sobre como reduzimos riscos em ambientes e tecnologias
Edge computing
Saiba quais são as atualizações nas plataformas que simplificam as operações na borda
Infraestrutura
Saiba o que há de mais recente na plataforma Linux empresarial líder mundial
Aplicações
Conheça nossas soluções desenvolvidas para ajudar você a superar os desafios mais complexos de aplicações
Programas originais
Veja as histórias divertidas de criadores e líderes em tecnologia empresarial
Produtos
- Red Hat Enterprise Linux
- Red Hat OpenShift
- Red Hat Ansible Automation Platform
- Red Hat Cloud Services
- Veja todos os produtos
Ferramentas
- Treinamento e certificação
- Minha conta
- Suporte ao cliente
- Recursos para desenvolvedores
- Encontre um parceiro
- Red Hat Ecosystem Catalog
- Calculadora de valor Red Hat
- Documentação
Experimente, compre, venda
Comunicação
- Contate o setor de vendas
- Fale com o Atendimento ao Cliente
- Contate o setor de treinamento
- Redes sociais
Sobre a Red Hat
A Red Hat é a líder mundial em soluções empresariais open source como Linux, nuvem, containers e Kubernetes. Fornecemos soluções robustas que facilitam o trabalho em diversas plataformas e ambientes, do datacenter principal até a borda da rede.
Selecione um idioma
Red Hat legal and privacy links
- Sobre a Red Hat
- Oportunidades de emprego
- Eventos
- Escritórios
- Fale com a Red Hat
- Blog da Red Hat
- Diversidade, equidade e inclusão
- Cool Stuff Store
- Red Hat Summit